585 resultados para ammonossidazione, etanolo, acetonitrile
Resumo:
A rapid, sensitive and specific method for quantifying ciprofibrate in human plasma using bezafibrate as the internal standard (IS) is described. The sample was acidified prior extraction with formic acid (88%). The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (diethyl ether/dichloromethane 70/30 (v/v)). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS). Chromatography was performed using Genesis C18 4 mu m analytical column (4.6 x 150 mm i.d.) and a mobile phase consisting of acetonitrile/water (70/30, v/v) and 1 mM acetic acid. The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 0.1-60 mu g/mL (r > 0.99). The limit of quantification was 0.1 mu g/mL. The intra- and interday accuracy and precision values of the assay were less than 13.5%. The stability tests indicated no significant degradation. The recovery of ciprofibrate was 81.2%, 73.3% and 76.2% for the 0.3, 5.0 and 48.0 ng/mL standard concentrations, respectively. For ciprofibrate, the optimized parameters of the declustering potential, collision energy and collision exit potential were -51 V, -16 eV and -5 V, respectively. The method was also validated without the use of the internal standard. This HPLC-MS/MS procedure was used to assess the bioequivalence of two ciprofibrate 100 mg tablet formulations in healthy volunteers of both sexes. The following pharmacokinetic parameters were obtained from the ciprofibrate plasma concentration vs. time curves: AUC(last), AUC(0-168 h), C(max) and T(max). The geometric mean with corresponding 90% confidence interval (CI) for test/reference percent ratios were 93.80% (90% CI = 88.16-99.79%) for C(max), 98.31% (90% CI = 94.91-101.83%) for AUC(last) and 97.67% (90% CI = 94.45-101.01%) for AUC(0-168 h). Since the 90% Cl for AUC(last), AUC(0-168 h) and C(max) ratios were within the 80-125% interval proposed by the US FDA, it was concluded that ciprofibrate (Lipless (R) 100 mg tablet) formulation manufactured by Biolab Sanus Farmaceutica Ltda. is bioequivalent to the Oroxadin (R) (100 mg tablet) formulation for both the rate and the extent of absorption. (C) 2011 Published by Elsevier B.V.
Resumo:
Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1). Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein`s biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1), showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of alpha-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian alpha-amylase activity in vitro.
Resumo:
Materials used in current technological approaches for the removal of mercury lack selectivity. Given that this is one of the main features of supramolecular chemistry, receptors based on calix[4]arene and calix[4]resorcarene containing functional groups able to interact selectively with polluting ions while discriminating against biologically essential ones were designed. Thus two receptors, a partially functionalized calix[4]arene derivative, namely, 5,11,17,23-tetra-tert-butyl [25-27-bis(diethyl thiophosphate amino)dihydroxy] calix[4]arene (1) and a fully functionalized calix[4]resorcarene, 4,6,10,12,16,18,22,24-diethyl thiophosphate calix[4]resorcarene (2) are introduced. Mercury(II) was the identified target due to the environmental and health problems associated with its presence in water Thus following the synthesis and characterization of 1 and 2 in solution ((1)HNMR) and in the solid state (X-ray crystallography) the sequence of experimental events leading to cation complexation studies in acetonitrile and methanol ((1)H NMR, conductance, potentiometric, and calorimetric measurements) with the aim of assessing their behavior as mercury selective receptors are described. The cation selectivity pattern observed in acetonitrile follows the sequence Hg(II) > Cu(II) > Ag(I). In methanol 1 is also selective for Hg(II) relative to Ag(I) but no interaction takes place between this receptor and Cu(II) in this solvent. Based on previous results and experimental facts shown in this paper, it is concluded that the complexation observed with Cu(II) in acetonitrile occurs through the acetonitrile-receptor adduct rather than through the free ligand. Receptor 2 has an enhanced capacity for uptaking Hg(II) but forms metalate complexes with Cu(II). These studies in solution guided the inmobilization of receptor 1 into a silica support to produce a new and recyclable material for the removal of Hg(II) from water. An assessment on its capacity to extract this cation from water relative to Cu(II) and Ag (I) shows that the cation selectivity pattern of the inmobilized receptor is the same as that observed for the free receptor in methanol. These findings demonstrate that fundamental studies play a critical role in the selection of the receptor to be attached to silicates as well as in the reaction medium used for the synthesis of the new decontaminating agent.
Resumo:
A thermodynamic study involving 7-nitro-1,3,5-triaza adamantane, 1, and its interaction with metal cations in nonaqueous media is first reported. Solubility data of 1 in various solvents were used to derive the standard Gibbs energies of solution, Delta G(s)degrees in these solvents. The effect of solvation in the different media was assessed from the Gibbs energy of transfer taking acetonitrile as a reference solvent. (1)H NMR studies of the interaction of 1 and metal cations were carried out in CD(3)CN and CD(3)OD and the data are reported. Conductance measurements revealed that this ligand forms lead(II) or zinc complexes of 1: 1 stoichiometry in acetonitrile. It also revealed a stoichiometry of two molecules of 1 per mercury(II) and two cadmiu (II) ions per molecule of 1. The addition of silver salt to 1 led to the precipitation of the silver-1 complex which was isolated and characterized by X-ray crystallography. At variance with conductance measurements in solution, in the solid state the X-ray structure show`s a 1:1 stoichiometry in the Hg(II) complex. The themiodynamics of complexation of 1 and these cations provide a quantitative assessment of the selective behavior of this ligand for ions of environmental relevance.
Resumo:
alpha-diamines, such as ethylendiamine and o-phenylendiamine, add to 3,4-aryl-disubstituted 1,2,5-thiadiazole 1,1-dioxides to give dihydropyrazines or quinoxalines, respectively and sulfamide. The new compound acenaphtho [5,6-b]-2,3-dihydropyrazine was synthesized and characterized. The addition of ethylendiamine to 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide gives 3,4-disubstituted thiadiazoildine 1,1-dioxide, dihydropyrazines, or pyrazines, depending on the reaction condition used. The reactions were followed by cyclic voltammetry and NMR spectroscopy which, in some cases, allowed the detection of the thiadiazolidine intermediate. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
The new trinuclear gadolinium complex [Gd(3)L(2)(NO(3))(2)(H(2)O)(4)]NO(3)center dot 8H(2)O (1) with the unsymmetrical ligand 2-[N-bis-(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-bis(2-hydroxy-2-oxoethyl)aminomethyl] phenol (H(3)L) was synthesized and characterized. The new ligand H(3)L was obtained in good yield. Complex I crystallizes in an orthorhombic cell, space group Pcab. Kinetic studies show that complex 1 is highly active in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate (K(m) = 4.09 mM, V(max) = 2.68 x 10(-2) mM s(-1), and k(cat) = V(max)/[1] = 0.67 s(-1)). Through a potentiometric study and determination of the kinetic behavior of 1 in acetonitrile/water solution, the species present in solution could be identified, and a trinuclear monohydroxo species appears to be the most prominent catalyst under mild conditions. Complex 1 displays high efficiency in DNA hydrolytic cleavage, and complete kinetic studies were carried out (K(m) = 4.57 x 10(-4) M, K(cat)` = 3.42 h(-1), and k(cat)`/K(m) = 7.48 x 10(3) M(-1) h(-1)). Studies with a radical scavenger (dimethyl sulfoxide, DMSO) showed that it did not inhibit the activity, indicating the hydrolytic action of 1 in the cleavage of DNA, and studies on the incubation of distamycin with plasmid DNA suggest that 1 is regio-specific, interacting with the minor groove of DNA.
Resumo:
The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 mu s, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization.
Resumo:
Introduction - A large number of natural and synthetic compounds having butenolides as a core unit have been described and many of them display a wide range of biological activities. Butenolides from P. malacophyllum have presented potential antifungal activities but no specific, fast, and precise method has been developed for their determination. Objective - To develop a methodology based on micellar electrokinetic chromatography to determine butenolides in Piper species. Methodology - The extracts were analysed in an uncoated fused-silica capillaries and for the micellar system 20 mmol/L SDS, 20% (v/v) acetonitrile (ACN) and 10 mmol/L STB aqueous buffer at pH 9.2 were used. The method was validated for precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) and the standard deviations were determined from the standard errors estimated by the regression line. Results - A micellar electrokinetic chromatography (MEKC) method for determination of butenolides in extracts gave full resolution for 1 and 2. The analytical curve in the range 10.0-50.0 mu g/mL (r(2) = 0.999) provided LOD and LOQ for 1 and 2 of 2.1/6.3 and 1.1/3.5 mu g/mL, respectively. The RSD for migration times were 0.12 and 1.0% for peak area ratios with 100.0 +/- 1.4% of recovery. Conclusions - A novel high-performance MEKC method developed for the analysis of butenolides 1 and 2 in leaf extracts of P. malacophyllum allowed their quantitative determined within an analysis time shorter than 5 min and the results indicated CE to be a feasible analytical technique for the quantitative determination of butenolides in Piper extracts. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.
Resumo:
The improvement of the enzymatic performance of Aspergillus terreus and Rhizopus oryzae in enantioselective bioreductions by using glycerol as a co-solvent has been studied. In the most of the bioreductions, glycerol has demonstrated its potential for improved conversions (up to >99%) and enantioselectivities (up to >99%) when compared to reactions in aqueous or other aqueous-organic media (THF, diethyl ether, toluene, DMSO and acetonitrile). Moreover, high isolated yields of the desired chiral alcohols have been obtained on a preparative scale showing the great potential of this green solvent in biocatalysis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The electroformation of silicon oxide was performed in two room temperature ionic liquids (RTIL), 1-butyl-3-methyl-imidazolium bis(trifluoromethane sulfonyl) imide (BMITFSI) and N-n-butyl-N-methylpiperidinium bis(trifluoromethane sulfonyl) imide (BMPTFSI). This phenomenon was studied by electrochemical techniques and it was observed that the oxide growth follows a high-field mechanism. X-ray Photoelectron Spectroscopy experiments have shown that a non-stoichiometric oxide film was formed, related to the low water content present in both RTILs (< 30 ppm). The roughness values obtained by using AFM technique of the silicon surface after etching with HF was 1.5 nm (RMS). The electrochemical impedance spectroscopy at low frequencies range was interpreted as a resistance in parallel with a CPE element, the capacitance obtained was associated with the dielectric nature of the oxide formed and the resistance was interpreted considering the chemical dissolution of the oxide by the presence of the TFSI anion. The CPE element was associated with the surface roughness and the very thin oxide film obtained. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Capillary electrophoresis with capacitively coupled contactless conductivity detection was successfully used to quantify N-acetylglucosamine and five N-acetyl-chitooligosaccharides (C2-C6) produced after reaction with a purified chitinase (TmChi) from Tenebrio molitor (Coleoptera). No derivatization process was necessary. The separation was developed using 10 mM NaOH with 10% (v/v) acetonitrile as background electrolyte and homemade equipment with a system that avoids the harmful effect of electrolysis. The limit of detection for all oligosaccharides was ca. 3 mu M, and the results indicated that the larger the oligosaccharide, the higher the sensitivity. Analysis of the chitooligosaccharides produced revealed that TmChi has an endolytic cleavage pattern with C5 as the best substrate (higher catalytic efficiency k(cat)/K-M) releasing C2 and C3. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
High-Performance Liquid Chromatography (HPLC) conditions are described for separation of 2,4-dinitrophenylhydrazone (2,4-DNPH) derivatives of carbonyl compounds in a 10 cm long C-18 reversed phase monolithic column. Using a linear gradient from 40 to 77% acetonitrile (acetonitrile-water system), the separation was achieved in about 10 min-a time significantly shorter than that obtained with a packed particles column. The method was applied for determination of formaldehyde and acetaldehyde in Brazilian sugar cane spirits. The linear dynamic range was between 30 and 600 mu g L-1, and the detection limits were 8 and 4 mu g L-1 for formaldehyde and acetaldehyde, respectively.
Resumo:
Microwave (MW)-assisted cellulose dissolution in ionic liquids (ILs) has routinely led either to incomplete biopolymer solubilization, or its degradation. We show that these problems can be avoided by use of low-energy MW heating, coupled with efficient stirring. Dissolution of microcrystalline cellulose in the IL 1-allyl-3-methylimidazolium chloride has been achieved without changing its degree of polymerization; regenerated cellulose showed pronounced changes in its index of crystallinity, surface area, and morphology. MW-assisted functionalization of MCC by ethanoic, propanoic, butanoic, pentanoic, and hexanoic anhydrides has been studied. Compared with conventional heating, MW irradiation has resulted in considerable decrease in dissolution and reaction times. The value of the degree of substitution (DS) was found to be DS(ethanoate) > DS(propanoate) > DS(butanoate). The values of DS(pentanoate) and DS(hexanoate) were found to be slightly higher than DS(ethanoate). This surprising dependence on the chain length of the acylating agent has been reported before, but not rationalized. On the basis of the rate constants and activation parameters of the hydrolysis of ethanoic, butanoic, and hexanoic anhydrides in aqueous acetonitrile (a model acyl transfer reaction), we suggest that this result may be attributed to the balance between two opposing effects, namely, steric crowding and (cooperative) hydrophobic interactions between the anhydride and the cellulosic surface, whose lipophilicity has increased, due to its partial acylation. Four ethanoate-based mixed esters were synthesized by the reaction with a mixture of the two anhydrides; the ethanoate moiety predominated in all products. The DS is reproducible and the IL is easily recycled. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 134-143, 2010