990 resultados para alpine
Resumo:
Plant survival in alpine landscapes is constantly challenged by the harsh and often unpredictable environmental conditions. Steep environmental gradients and patchy distribution of habitats lead to small size and spatial isolation of populations and restrict gene flow. Agricultural land use has further increased the diversity of habitats below and above the treeline. We studied the consequences of the highly structured alpine landscape for evolutionary processes in four study plants: Epilobium fleischeri, Geum reptans, Campanula thyrsoides and Poa alpina. The main questions were: (1) How is genetic diversity distributed within and among populations and is it affected by altitude, population size or land use? (2) Do reproductive traits such as allocation to sexual or vegetative reproduction vary with altitude or land use? Furthermore, we studied if seed weight increases with altitude. Within-population genetic diversity of the four species was high and mostly not related to altitude and population size. Nevertheless, genetic differentiation among populations was pronounced and strongly increasing with distance. In Poa alpina genetic diversity was affected by land use. Results suggest considerable genetic drift among populations of alpine plants. Reproductive allocation was affected by altitude and land use in Poa alpina and by succession in Geum reptans. Seed weight was usually higher in alpine species than in related lowland species. We conclude that the evolutionary potential to respond to global change is mostly intact in alpine plants, even at high altitude. Phenotypic variability is shaped by adaptive as well as by random evolutionary processes; moreover plastic responses to growth conditions seem to be crucial for survival of plants in the alpine landscape.
Resumo:
Die europäischen Alpen sind in den Hochlagen trotz einem immensen Rückgang in den letzten Jahrzehnten immer noch stark vergletschert. Früher dachte man, dass die alpine Zone über rund 2000 m über Meer vom prähistorischen Menschen nicht begangen wurde. 1991 zeigte die Entdeckung des Mannes aus dem Eis beim Tisenjoch („Ötzi“) in über 3000 m Höhe, dass schon im Neolithikum Vorstösse bis in die vergletscherten Gebiete der Alpen stattgefunden haben. Die ältesten Spuren am Schnidejoch, einem Pass in den Berner Alpen der Schweiz, reichen bis in die Zeit zwischen 4800 und 4500 v.Chr. zurück. Der Pass wurde auch in der Frühen Bronzezeit benutzt, wie zahlreiche Objekte aus der Zeit zwischen etwa 2200 und 1600 v.Chr. belegen. Frühbronzezeitliche Funde liegen auch vom Lötschenpass, einem zweiten Passübergang in den Berner Alpen vor. Nördlich dieser Übergänge befinden sich die bekannten frühbronzezeitlichen Gräber des Berner Oberlandes (Region des unteren Thunersees), südlich davon stammen zahlreiche frühbronzezeitliche Funde aus Gräbern und Nekropolen im Rhonetal. Dank der Erhaltung von organischem Material bieten die Eisfundstellen wertvolle Einblicke zur Frequentierung der Hochalpen. Neben Bohlenwegen, Strassen und Brücken bilden Pässe wichtige Elemente des prähistorischen terrestrischen Transportsystems.
Resumo:
Archaeological finds from Schnidejoch (2756 m a.s.l.) and Lötschenpass (2690 m a.s.l.) cover the periods from the Early Neolithic to the Middle Ages (4800 BC - 1000 AD). The numerous finds from Schnidejoch discovered since 2003 can now be seen in relationship with Neolithic and Bronze Age settlements in the Rhone valley and together with the early use of alpine meadows and early transhumance. Finds of Early Bronze Age bows from Lötschenpass go back to the 1930ies. New finds of wooden objects and objects made from birch bark melted out from the ice in the summer of 2011. The lecture presents these new finds and an actualized view of Schnidejoch finds.
Resumo:
Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.
Resumo:
Water stable isotope ratios and net snow accumulation in ice cores are commonly interpreted as temperature or precipitation proxies. However, only in a few cases has a direct calibration with instrumental data been attempted. In this study we took advantage of the dense network of observations in the European Alpine region to rigorously test the relationship of the annual and seasonal resolved proxy data from two highly resolved ice cores with local temperature and precipitation. We focused on the time period 1961–2001 with the highest amount and quality of meteorological data and the minimal uncertainty in ice core dating (±1 year). The two ice cores were retrieved from the Fiescherhorn glacier (northern Alps, 3900 m a.s.l.), and Grenzgletscher (southern Alps, 4200 m a.s.l.). A parallel core from the Fiescherhorn glacier allowed assessing the reproducibility of the ice core proxy data. Due to the orographic barrier, the two flanks of the Alpine chain are affected by distinct patterns of precipitation. The different location of the two glaciers therefore offers a unique opportunity to test whether such a specific setting is reflected in the proxy data. On a seasonal scale a high fraction of δ18O variability was explained by the seasonal cycle of temperature (~60% for the ice cores, ~70% for the nearby stations of the Global Network of Isotopes in Precipitation – GNIP). When the seasonality is removed, the correlations decrease for all sites, indicating that factors other than temperature such as changing moisture sources and/or precipitation regimes affect the isotopic signal on this timescale. Post-depositional phenomena may additionally modify the ice core data. On an annual scale, the δ18O/temperature relationship was significant at the Fiescherhorn, whereas for Grenzgletscher this was the case only when weighting the temperature with precipitation. In both cases the fraction of interannual temperature variability explained was ~20%, comparable to the values obtained from the GNIP stations data. Consistently with previous studies, we found an altitude effect for the δ18O of −0.17‰/100 m for an extended elevation range combining data of the two ice core sites and four GNIP stations. Significant correlations between net accumulation and precipitation were observed for Grenzgletscher during the entire period of investigation, whereas for Fiescherhorn this was the case only for the less recent period (1961–1977). Local phenomena, probably related to wind, seem to partly disturb the Fiescherhorn accumulation record. Spatial correlation analysis shows the two glaciers to be influenced by different precipitation regimes, with the Grenzgletscher reflecting the characteristic precipitation regime south of the Alps and the Fiescherhorn accumulation showing a pattern more closely linked to northern Alpine stations.
Resumo:
Groundwater with underground residence times between days and a few years have been investigated over more than 20 years from 487 remote sites located in different aquifer types in the Alpine belt. Analysis of the data reveals that groundwaters evolved in crystalline, evaporite, carbonate, molasse, and flysch aquifers can be clearly distinguished based on their major and trace element composition and degree of mineralisation. A further subdivision can be made even within one aquifer type based on the trace element compositions, which are characteristic for the lithologic environment. Major and trace element concentrations can be quantitatively described by interaction of the groundwater with the aquifer- specific mineralogy along the flow path. Because all investigated sites show minimal anthropogenic influences, the observed concentration ranges represent the natural background concentrations and can thus serve as a “geo-reference” for recent groundwaters from these five aquifer types. This “geo-reference” is particularly useful for the identification of groundwater contamination. It further shows that drinking water standards can be grossly exceeded for critical elements by purely natural processes
Resumo:
Since multi-site reconstructions are less affected by site-specific climatic effects and artefacts, regional palaeotemperature reconstructions based on a number of sites can provide more robust estimates of centennial- to millennial-scale temperature trends than individual, site-specific records. Furthermore, reconstructions based on multiple records are necessary for developing continuous climate records over time scales longer than covered by individual sequences. Here, we present a procedure for developing such reconstructions based on relatively short (centuries to millennia), discontinuously sampled records as are typically developed when using biotic proxies in lake sediments for temperature reconstruction. The approach includes an altitudinal correction of temperatures, an interpolation of individual records to equal time intervals, a stacking procedure for sections of the interval of interest that have the same records available, as well as a splicing procedure to link the individual stacked records into a continuous reconstruction. Variations in the final, stacked and spliced reconstruction are driven by variations in the individual records, whereas the absolute temperature values are determined by the stacked segment based on the largest number of records. With numerical simulations based on the NGRIP δ18O record, we demonstrate that the interpolation and stacking procedure provides an approximation of a smoothed palaeoclimate record if based on a sufficient number of discontinuously sampled records. Finally, we provide an example of a stacked and spliced palaeotemperature reconstruction 15000–90 calibrated 14C yr BP based on six chironomid records from the northern and central Swiss Alps and eastern France to discuss the potential and limitations of this approach.
Resumo:
Cet article aborde la transformation de régions de montagne en lieux de résidence remplaçant des secteurs économiques plus anciens (agriculture, industrie manufacturière, tourisme) dans les montagnes européennes. Il se place dans la perspective du développement régional et de son impact sur les ressources régionales fixes, le « capital territorial ». Cette nouvelle tendance affecte les montagnes européennes de deux manières, et participe à la formation de régions métropolitaines qui combinent centres métropolitains et environnements de loisirs fondés sur les attraits du paysage pour constituer de nouvelles entités intégrées. Au cours du processus, le paysage devient un bien de consommation nouveau et rare, qui joue un rôle dans l’accumulation du capital investi. L’article établit que les concepts d’esthétique du paysage et d’agréments ne suffisent pas à expliquer cette nouvelle dynamique, car ils méconnaissent les processus spatio-économiques ainsi que le rôle de la marchandisation du paysage pour les nouveaux résidents. Ces nouveaux résidents ont un profil plus « multilocal » que migrant. La multilocalité et l’usage sélectif des produits du paysage freinent le processus d’intégration, crucial pour entretenir et développer le capital territorial. On peut poser que la présence non permanente des nouveaux résidents risque d’affaiblir et non de renforcer les structures locales existantes. Il semble donc nécessaire de déployer des efforts particuliers auprès de chaque groupe de nouveaux résidents pour que de simples résidents à temps partiel deviennent des acteurs régionaux (au moins à temps partiel). De plus, le concept du développement régional centré sur les acteurs innovants doit être remis en question dans la mesure où l’aspect « consommation » domine le rapport du paysage.
Resumo:
Glacier fluctuations are a key indicator of changing climate. Their reconstruction beyond historical times unravels glacier variability and its forcing factors on long time scales, which can considerably improve our understanding of the climate–glacier relationship. Here, we present a 2250-year-long reconstruction of particle-mass accumulation rates recorded in the lacustrine sediments of Lake Trüebsee (Central Swiss Alps) that are directly related to glacier extent, thus reflecting a continuous record of fluctuations of the upstream-located Titlis Glacier. Mass accumulation rate values show strong centennial to multi-centennial fluctuations and reveal 12 well-pronounced periods of enhanced values corresponding to times of maximum extent of the neighboring Lower Grindelwald Glacier. This result supports previous studies of proglacial lake sediments that documented high mass accumulation rate values during glacier advances. The strong variability in the Lake Trüebsee mass accumulation rate record thus represents a highly sensitive paleoclimatic archive, which mirrors rapid and pronounced feedbacks of Titlis Glacier to climatic changes over the past 2250years. The comparison of our data with independent paleo-temperature reconstructions from tree rings suggests that variations in mean summer temperature were the primary driving factor of fluctuations of Titlis Glacier. Also, advances of Titlis Glacier occurred during the grand solar minima (Dalton, Maunder, Spörer, Wolf) of the last millennium. This relation of glacier extent with summer temperature reveals strong evidence that the mass balance of this Alpine glacier is primarily controlled by the intensity of glacier melting during summer.