982 resultados para agar gel electrophoresis
Resumo:
Between June 4th and June 20th1996 rotavirus, adenovirus, and astrovirus (HAstrV) were investigated in fecal samples from 27 children under three years old with acute diarrhea, attending the Bertha Lutz day care center, in Rio de Janeiro. All fecal samples were analyzed by polyacrylamide gel electrophoresis (PAGE), reverse transcriptase polymerase chain reaction (RT-PCR), enzyme immunoassays (EIA), and electron microscopy (EM). Nine of them (33%) showed positive results for HAstrV by at least one of the employed methodologies. Eight were positive by RT-PCR and EIA, and six by EM. All positive samples were inoculated onto HT-29 (human colon adenocarcinoma) cultured cells for HAstrV isolation and seven were positive after three passages. The sequencing analysis of eight RT-PCR products (449 bp) from gene that codifies VP2 protein, showed a total nucleotide identity among them and 98% with HAstrV-1 (strain Oxford type 1). This is the first report of a gastroenteritis outbreak associated with HAstrv-1 in a day care center in Rio de Janeiro and it reinforces the importance of this virus in association with infantile acute gastroenteritis.
Resumo:
In order to improve the specificity and sensitivity of the techniques for the human anisakidosis diagnosis, a method of affinity chromatography for the purification of species-specific antigens from Anisakis simplex third-stage larvae (L3) has been developed. New Zealand rabbits were immunized with A. simplex or Ascaris suum antigens or inoculated with Toxocara canis embryonated eggs. The IgG specific antibodies were isolated by means of protein A-Sepharose CL-4B beads columns. IgG anti-A. simplex and -A. suum were coupled to CNBr-activated Sepharose 4B. For the purification of the larval A. simplex antigens, these were loaded into the anti-A. simplex column and bound antigens eluted. For the elimination of the epitopes responsible for the cross-reactions, the A. simplex specific proteins were loaded into the anti-A. suum column. To prove the specificity of the isolated proteins, immunochemical analyses by polyacrylamide gel electrophoresis were carried out. Further, we studied the different responses by ELISA to the different antigenic preparations of A. simplex used, observing their capability of discriminating among the different antisera raised in rabbits (anti-A. simplex, anti-A. suum, anti-T. canis). The discriminatory capability with the anti-T. canis antisera was good using the larval A. simplex crude extract (CE) antigen. When larval A. simplex CE antigen was loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with A. simplex CE antigen, its capability for discriminate between A. simplex and A. suum was improved, increasing in the case of T. canis. The best results were obtained using larval A. simplex CE antigen loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with adult A. suum CE antigen. When we compared the different serum dilution and antigenic concentration, we selected the working serum dilution of 1/400 and 1 µg/ml of antigenic concentration.
Resumo:
This study had the objective of to analyze the demographic and bacteriologic data of 32 hospitalized newborns in an neonatal intensive care unit of a public maternity hospital in Rio de Janeiro city, Brazil, seized by Pseudomonas aeruginosa sepsis during a period ranged from July 1997 to July 1999, and to determine the antimicrobial resistance percentage, serotypes and pulsed field gel electrophoresis (PFGE) patterns of 32 strains isolated during this period. The study group presented mean age of 12.5 days, with higher prevalence of hospital infection in males (59.4%) and vaginal delivery (81.2%), than females (40.6%) and cesarean delivery (18.8%), respectively. In this group, 20 (62.5%) patients received antimicrobials before positive blood cultures presentation. A total of 87.5% of the patients were premature, 62.5% presented very low birth weight and 40.6% had asphyxia. We detected high antimicrobial resistance percentage to b-lactams, chloramphenicol, trimethoprim/sulfamethoxazole and tetracycline among the isolated strains. All isolated strains were classified as multi-drug resistant. Most strains presented serotype O11 while PFGE analysis revealed seven distinct clones with isolation predominance of a single clone (75%) isolated from July 1997 to June 1998.
Resumo:
There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.
Resumo:
A total of 2,605 faecal specimens from children up to 10 years old with or without diarrhoea were collected. Samples were obtained from 1986 to 2000 in hospitals, outpatient clinics and day-care centers in Goiânia, Goiás. Two methodologies for viral detection were utilized: a combined enzyme immunoassay for rotavirus and adenovirus and polyacrylamide gel electrophoresis. Results showed 374 (14.4%) faecal specimens positive for Rotavirus A, most of them collected from hospitalized children. A significant detection rate of rotavirus during the period from April to August, dry season in Goiânia, and different frequencies of viral detection throughout the years of study were also observed. Rotavirus was significantly related to hospitalization and to diarrhoeal illness in children up to 24 months old. This study reinforces the importance of rotavirus as a cause of diarrhoea in children and may be important in regards to the implementation of rotavirus vaccination strategies in our country.
Resumo:
DNA methylation has an important impact on normal cell physiology, thus any defects in this mechanism may be related to the development of various diseases In this project we are interested in identifying epigeneticaliy modified genes, in general controlled by processes related to the DNA methylation, by means of a new strategy combining protomic and genomic analyses. First, the two Dimensional-Difference Gel Electrophoresis (2-DIGE) protein analyses of extracts obtained from HCT-116 wt and double knockout for DNMT1 and DNMT3b (DKO) cells revealed 34 proteins overexpressed in the condition of DNMTs depletion. From five genes with higher transcript lavels in DKO cells, comparing with HCT-116 wt. oniy AKR1B1, UCHLl and VIM are melhylated in HCT-116. As expected. the DNA methvlation 1s lost in DKO cells. The rneth,vl ation of VIM and UCHLl promoters in some cancer samples has already been repaired, thus further studies has been focused on AKRlBI. AKR1B1 expression due lo DNA methyiaton of promoter region seems to occur specilfically in the colon cancer cell Iines. which was confirmed in the DNA rnethylation status and expression analyses. performed on 32 different cancer cell lines (including colon, breast, lymphoma, leukemia, neuroblastoma, glioma and lung cancer cell Iines) as well as normal colon and normal lymphocytes samples. AKRIBI expression after treatments with DNA demethvlating agent (AZA) was rescued in 5 coloncancer cell lines (including genetic regulation of the candidate gene. The methylation status of the rest of the genes identified in proteomic analysis was checked by methylation specific PCR (MSP) experiment and all appeared to be unmethylated. The similar research has been done also bv means of Mecp2-null mouse model For 14 selected candidate genes the analyses of expression leveis, methylation Status and MeCP2 interaction with promoters are currently being performed.
Resumo:
The aim of this study was to evaluate the use of one of the molecular typing methods such as PCR (polymerase chain reaction) following by RFLP (restriction fragment length polymorphism) analysis in the identification of Candida species and then to differentiate the identified azole susceptible and resistant Candida albicans strains by using AP-PCR (arbitrarily primed-polymerase chain reaction). The identification of Candida species by PCR and RFLP analysis was based on the size and primary structural variation of rDNA intergenic spacer regions (ITS). Forty-four clinical Candida isolates comprising 5 species were included to the study. The amplification products were digested individually with 3 different restriction enzymes: HaeIII, DdeI, and BfaI. All the isolates tested yielded the expected band patterns by PCR and RFLP analysis. The results obtained from this study demonstrate that Candida species can be differentiated as C. albicans and non-C. albicans strains only by using HaeIII restriction enzyme and BfaI maintains the differentiation of these non-C. albicans species. After identification Candida species with RFLP analysis, C. albicans strains were included to the AP-PCR test. By using AP-PCR, fluconazole susceptible and resistant strains were differentiated. Nine fluconazole susceptible and 24 fluconazole resistant C. albicans were included to the study. Fluconazole resistant strains had more bands when evaluating with the agarose gel electrophoresis but there were no specific discriminatory band patterns to warrant the differentiation of the resistance. The identification of Candida species with the amplification of intergenic spacer region and RFLP analysis is a practical, short, and a reliable method when comparing to the conventional time-consuming Candida species identification methods. The fluconazole susceptibility testing with AP-PCR seems to be a promising method but further studies must be performed for more specific results.
Resumo:
Severe mucocutaneous (MCL) and diffuse (DCL) forms of American cutaneous leishmaniasis (ACL) are infrequent in Venezuela. Chemotherapy produces only transitory remission in DCL, and occasional treatment failures are observed in MCL. We have evaluated therapy with an experimental vaccine in patients with severe leishmaniasis. Four patients with MCL and 3 with early DCL were treated with monthly intradermal injections of a vaccine containing promastigotes of Leishmania (Viannia) braziliensis killed by pasteurization and viable Bacillus Calmette- Guerin. Clinical and immunological responses were evaluated. Integrity of protein constituents in extracts of pasteurized promastigotes was evaluated by gel electrophoresis. Complete remission of lesions occurred after 5-9 injections in patients with MCL or 7-10 injections in patients with early DCL. DCL patients developed positive skin reactions, average size 18.7 mm. All have been free of active lesions for at least 10 months. Adverse effects of the vaccine were limited to local reactivity to BCG at the injection sites and fever in 2 patients. Extracts of pasteurized and fresh promastigotes did not reveal differences in the integrity of protein components detectable by gel electrophoresis. Immunotherapy with this modified vaccine offers an effective, safe option for the treatment of patients who do not respond to immunotherapy with vaccine containing autoclaved parasites or to chemotherapy .
Resumo:
Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase.
Resumo:
The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.
Resumo:
The aim of this study was to evaluate the susceptibility of 35 resistant Pseudomonas aeruginosa clinical isolates to a quaternary ammonium hospital disinfectant. The methodology was the AOAC Use-Dilution Test, with disinfectant at its use-concentration. In addition, the chromosomal DNA profile of the isolates were determined by macro-restriction pulsed field gel electrophoresis (PFGE) method aiming to verify the relatedness among them and the behavior of isolates from the same group regarding the susceptibility to the disinfectant. Seventy one percent of the isolates were multiresistant to antibiotics and 43% showed a reduced susceptibility to the disinfectant. The PFGE methodology detected 18 major clonal groups. We found isolates with reduced susceptibility to the disinfectant and we think that these are worrying data that should be further investigated including different organisms and chemical agents in order to demonstrate that microorganisms can be destroyed by biocide as necessary. We also found strains of the same clonal groups showing different susceptibility to the disinfectant. This is an interesting observation considering that only few works are available about this subject. PFGE profile seems not to be a reliable marker for resistance to disinfectants.
Resumo:
The neuraminidase gene, nanH, is present in the O1, non-toxigenic Vibrio cholerae Amazonia strain. Its location has been assigned to a 150 kb NotI DNA fragment, with the use of pulsed-field gel electrophoresis and DNA hybridization. This NotI fragment is positioned inside 630 kb SfiI and 1900 kb I-CeuI fragments of chromosome 1. Association of the pathogenicity island VPI-2, carrying nanH and other genes, with toxigenic strains has been described by other authors. The presence of nanH in a non-toxigenic strain is an exception to this rule. The Amazonia strain nanH was sequenced (Genbank accession No. AY825932) and compared to available V. cholerae sequences. The sequence is different from those of pandemic strains, with 72 nucleotide substitutions. This is the first description of an O1 strain with a different nanH allele. The most variable domain of the Amazonia NanH is the second lectin wing, comprising 13 out of 17 amino acid substitutions. Based on the presence of nanH in the same region of the genome, and similarity of the adjacent sequences to VPI-2 sequences, it is proposed that the pathogenicity island VPI-2 is present in this strain.
Resumo:
Staphylococcus aureus is an important agent of healthcare-associated and community-acquired infections. A major characteristic of this microorganism is the ability to develop resistance to antimicrobial agents. Several molecular techniques have been applied for the characterization of S. aureus in epidemiological studies. In the present review, we discuss the application of molecular techniques for typing S. aureus strains and describe the nomenclature and evolution of epidemic clones of this important pathogen.
Resumo:
A total of 283 Salmonella Typhimurium strains isolated from cases of human infections and non human sources, were examined for antimicrobial susceptibilityand the incidence of resistance was 38% and multiple resistance (to three or more antimicrobials) was 15%. All 43 multidrug-resistant strains (MDR) and 13 susceptible ones were characterized by phage typing and pulsed- field gel electrophoresis (PFGE). The strains encompassed 14 definitive phage types (DT), three were untypable (UT), and 18 atypicals or reaction does not conform (RDNC), which belonged to 21 PFGE patterns, A1-A21. The predominant phage types were DT49, DT193, and RDNC and two strains belonging to DT 104 and 104b were also identified. The most commum PFGE patterns were A1 and A8. Analysis by PFGE and phage typing demonstrated that the most of the MDR were multiclonal and association among multiresistance, phage typing, and PFGE patterns was not so significant.
Resumo:
Rotavirus is a major cause of infantile acute diarrhea, causing about 440,000 deaths per year, mainly in developing countries. The World Health Organization has been recommending the assessment of rotavirus burden and strain characterization as part of the strategies of immunization programs against this pathogen. In this context, a prospective study was made on a sample of 134 children with acute diarrhea and severe dehydration admitted to venous fluid therapy in two state hospitals in Rio de Janeiro, Brazil, from February to September 2004. Rotavirus where detected by polyacrylamide gel electrophoresis (PAGE) and by an enzyme-linked immunoassay to rotavirus and adenovirus (EIARA) in 48% of the children. Positive samples for group A rotavirus (n = 65) were analyzed by reverse transcription/heminested multiplex polymerase chain reaction to determine the frequency of G and [P] genotypes and, from these, 64 samples could be typed. The most frequent G genotype was G1 (58%) followed by G9 (40%). One mixed infection (G1/G9) was detected. The only [P] genotype identified was [8]. In order to estimate the rotavirus infection frequency in children who acquired diarrhea as hospital infection in those hospitals, we studied 24 patients, detecting the pathogen in 41% of them. This data suggest that genotype G9 is an important genotype in Rio de Janeiro, with implications to the future strategies of vaccination against rotavirus, reinforcing the need of continuous monitoring of circulating strains of the pathogen, in a surveillance context.