954 resultados para acoustic impedance
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.
Resumo:
The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 A degrees C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher's universal power law.
Resumo:
Polycrystalline La3/2Bi3/2Fe5O12 (LBIO) compound was prepared by a high-temperature solid-state reaction technique. The complex impedance of LBIO was measured over a wide temperature (i.e., room temperature to 500 C) and frequencies (i.e., 10(2)-10(6) Hz) ranges. This study takes advantage of plotting ac data simultaneously in the form of impedance and modulus spectroscopic plots and obey non-Debye type of relaxation process. The Nyquist's plot showed the presence of grain effects in the material at high temperature. The ac conductivity spectrum was found to obey Jonscher's universal power law. The dc conductivity was found to increase with rise in temperature. The activation energy of the compound was found to be 0.24 and 0.51 eV in the low and high-temperature region, respectively, for conduction process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Police officers are exposed to impact noise coming from firearms, which may cause irreversible injuries to the hearing system.Aim: To evaluate the noise exposure in shooting stands during gunfire exercises, to analyze the acoustic impact of the noise produced by the firearms and to associate it with tonal audiometry results.Study design: Cross-sectional.Materials and methods: To measure noise intensity we used a digital sound level meter, and the acoustic analysis was carried out by means of the oscillations and cochlear response curves provided by the Praat software. 30 police officers were selected (27 males and 3 females).Results: The peak level measured was 113.1 dB(C) from a .40 pistol and 116.8 dB(C) for a .38 revolver. The values obtained for oscillation and Praat was 17.9 +/- 0.3 Barks, corresponding to the rate of 4,120 and 4,580 Hz. Audiometry indicated greater hearing loss at 4,000Hz in 86.7% of the cases.Conclusion: With the acoustic analysis it was possible to show cause and effect between the main areas of energy excitation of the cochlea (Praat cochlear response curve) and the frequencies of low hearing acuity.
Resumo:
This study investigates the possible differences between actors' and nonactors' vocal projection strategies using acoustic and perceptual analyses. A total of 11 male actors and 10 male nonactors volunteered as subjects, reading an extended text sample in habitual, moderate, and loud levels. The samples were analyzed for sound pressure level (SPL), alpha ratio (difference between the average SPL of the 1-5 kHz region and the average SPL of the 50 Hz-1 kHz region), fundamental frequency (F0), and long-term average spectrum (LTAS). Through LTAS, the mean frequency of the first formant (171) range, the mean frequency of the actor's formant, the level differences between the F1 frequency region and the F0 region (L1-L0), and the level differences between the strongest peak at 0-1 kHz and that at 3-4 kHz were measured. Eight voice specialists evaluated perceptually the degree of projection, loudness, and tension in the samples. The actors had a greater alpha ratio, stronger level of the actor's formant range, and a higher degree of perceived projection and loudness in all loudness levels. SPL, however, did not differ significantly between the actors and nonactors, and no differences were found in the mean formant frequencies ranges. The alpha ratio and the relative level of the actor's formant range seemed to be related to the degree of perceived loudness. From the physiological point of view, a more favorable glottal setting' providing a higher glottal closing speed, may be characteristic of these actors' projected voices. So, the projected voices, in this group of actors, were more related to the glottic source than to the resonance of the vocal tract.
Resumo:
Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha 1 subunit (GlyR alpha 1), GABA(A), GABA(B), and subunits of alpha 2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyR alpha 1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of nor-adrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to determine whether or not blind children perseverate during a modified Piagetian A-not-B reaching task, with conditions that employ luminous AB targets and acoustic AB targets. Ten congenitally blind children, ages 1-4 years, with residual vision for light, took part in this study. Behavioral and kinematic data were computed for participants' reaches, performed in six A trials and in two B trials, in both stimulus conditions. All of the children perseverated in the luminous condition, and none of them perseverated in the condition using acoustic targets. The children tilted their heads in the direction of the target as they reached towards it. However, this coupling action (head-reaching) occurred predominantly in the A trials in the acoustic condition. In the luminous condition, in contrast to the acoustic condition, the children took longer times to initiate the reaching movement. Also, in the luminous condition, the children explored the target surroundings, unlike the acoustic condition, in which they reached straight ahead. For these blind children, sound was more relevant to reaching than was the luminous stimulus. The luminous input caused perseveration in congenitally blind children in a similar way that has been reported in the literature for typically-developing, sighted infants, ages 8-12 months, performing A-not-B tasks with visual inputs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Social behavior of Hypsiboas albomarginatus was studied in the Atlantic rain forest, Municipality of Ubatuba, in the north coast of the State of São Paulo, southeastern Brazil. Vocalizations of H. albomarginatus are described, including contexts in which they were emitted and temporal and spectral parameters differentiating advertisement from aggressive calls. Dominant call frequency was inversely correlated with male length and body mass but not with environmental temperature. Number of pulses per note was not correlated with any variable, and advertisement call amplitude was influenced by temperature and time. During chorus aggregation, males interacted acoustically by emitting advertisement calls in antiphony, or by emitting aggressive calls. Some disputes among males culminated in physical combat; males performed kicks and slaps on rivals' heads, in an apparent attempt to dislodge rivals from perches. Visual signals were also displayed during conflicts between males, contributing to an escalation of aggressive behavior. Visual signals were not recorded during courtship between males and females but may help in the accurate localization of the signaling male during aggressive interactions.
Resumo:
We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)