995 resultados para absorption measurement
Resumo:
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations: i) subtraction of the best linear fit from the data (detrending), and; ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.
Resumo:
Second-generation activity monitors have revolutionized the way in which we measure youth physical activity. Use of the monitors avoids the problems associated with self-report methods and allows for the estimation of physical activity patterns over time. This article examines important methodological issues related to the use of activity monitors in children and adolescents.
Resumo:
Background Promoting participation physical activity (PA) is an important means of promoting healthy growth and development in children with cerebral palsy (CP). The ActiGraph is a uniaxial accelerometer that provides a realtime measure of PA intensity, duration and frequency. Its small, light weight design makes it a promising measure of activity in children with CP. To date no study has validated the use of accelerometry as a measure of PA in ambulant adolescents with CP. Objectives To evaluate the validity of the ActiGraph accelerometer for measuring PA intensity in adolescents with CP, using oxygen consumption (VO2), measured using portable indirect calorimetry (Cosmed K4b2), as the criterion measure. Design Validation Study Participants/Setting: Ambulant adolescents with CP aged 10–16 years, GMFCS rating of I-III. The recruitment target is 30 (10 in each GMFCS level). Materials/Methods Participants wore the ActiGraph (counts/min) and a Cosmed K4b2 indirect calorimeter (mL/kg/min) during six activity trials: quiet sitting (QS), comfortable paced walking (CPW), brisk paced walking (BPW), fast paced walking (FPW), a ball-kicking protocol (KP) and a ball-throwing protocol (TP). MET levels (multiples of resting metabolism) for each activity were predicted from ActiGraph counts using the Freedson age-specific equation (Freedson et al. 2005) and compared with actual MET levels measured by the Cosmed. Predicted and measured METs for each activity trial were classified as light (> 1.5 METs and <4.6 METs) or moderate to vigorous intensity (≥ 4.6 METs). Results To date 36 bouts of activity have been completed (6 participants x 6 activities). Mean VO2 increased linearly as the intensity of the walking activity increased (CPW=9.47±2.16, BPW=14.06±4.38, FPW=19.21±5.68 ml/kg/min) and ActiGraph counts reflected this pattern (CPW=1099±574, BPW=2233±797 FPW=4707±1013 counts/min). The throwing protocol recording the lowest VO2 (TP=7.50±3.86 ml/kg/min) and lowest overall counts/min (TP=31±27 counts/min). When each of the 36 bouts were classified as either light or moderate to vigorous intensity using measured VO2 as the criterion measure, the Freedson equation correctly classified 28 from 36 bouts (78%). Conclusion/Clinical Implications These preliminary findings suggest that there is a relationship between the intensity of PA and direct measure of oxygen consumption and that therefore the ActiGraph may be a promising tool for accurately measuring free living PA in the community. Further data collection of the complete sample will enable secondary analysis of the relationship between PA and severity of CP (GMFCS level).
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
This thesis is a comparative investigation of the methodology applied to human skin temperature measurement. The findings of this thesis suggest that clinical and significant differences exist between conductive and infrared devices which are commonly employed in the assessment of human skin temperature. These significant differences could potentially influence the interpretation of results, diagnosis and therefore treatment outcomes for health, clinical and exercise science applications.
Resumo:
Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.
Resumo:
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
Resumo:
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.
Resumo:
Firm-customer digital connectedness for effective sensing and responding is a strategic imperative for contemporary competitive firms. This research-in-progress paper conceptualizes and operationalizes the firm-customer mobile digital connectedness of a smart-mobile customer. The empirical investigation focuses on mobile app users and the impact of mobile apps on customer expectations. Based on pilot data collected from 127 customers, we tested hypotheses pertaining to firm-customer mobile digital connectedness and customer expectations. Our test analysis using linear and non-linear postulations reveals those customers raise their expectations as they increase their digital interactions with a firm.
Resumo:
Combustion sources are well-known sources of electrical ions (Howard, J.B. et al. 1973). Motor vehicles emissions are one of the main sources of ions in urban environments. The presence of charged particles in motor vehicle emissions has been known for many years (Kittelson, 1986; Yu et al, 2004; Jung and Kittelson, 2005). Although these particles are probably charged by the attachment of air ions, there is very little information on the nature, sign and magnitude of the small ions (diameter < 1.6 nm) emitted by motor vehicles and/or present by the sides of roads.
Resumo:
Indians tend to have lower lean body mass than other ethnic groups which increases the risk of chronic diseases. Three complementary studies included in this thesis advanced knowledge on determinants of lean body mass in Indians and the techniques to measure it. The first study examined the determinants of lean body mass in young Indian adults and highlighted the importance of diet and physical activity for development of lean body mass. This study has important implications for policy on prevention of chronic diseases in India. The other two studies helped refinement of the techniques of lean body mass measurement and are expected to facilitate future research in this area. The thesis is presented in the form of publications in high ranking journals.
Resumo:
Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.
Resumo:
Bulk heterojunction organic solar cells based on poly[4,7-bis(3- dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] and [6,6]-phenyl C71-butyric acid methyl ester are investigated. A prominent kink is observed in the fourth quadrant of the current density-voltage (J-V) response. Annealing the active layer prior to cathode deposition eliminates the kink. The kink is attributed to an extraction barrier. The J-V response in these devices is well described by a power law. This behavior is attributed to an imbalance in charge carrier mobility. An expected photocurrent for the device displaying a kink in the J-V response is determined by fitting to a power law. The difference between the expected and measured photocurrent allows for the determination of a voltage drop within the device. Under simulated 1 sun irradiance, the peak voltage drop and contact resistance at short circuit are 0.14 V and 90 Ω, respectively. © 2012 American Institute of Physics.
Resumo:
The paper analyses technical efficiency of the Japanese banks from 2000 to 2007. The estimation technique is based on the Russell directional distance function that takes into consideration not only desirable outputs but also an undesirable output that is represented by non-performing loans (NPLs). The results indicate that NPLs remain a significant burden as for banks' performance. We show that banks' inputs have to be utilised more efficiently, particularly labour and premises. We also argue that a further restructuring process is needed in the segment of Regional Banks. We conclude that the Japanese banking system is still far away from being fully consolidated and restructured.
Resumo:
The conventional measures of benchmarking focus mainly on the water produced or water delivered, and ignore the service quality, and as a result the 'low-cost and low-quality' utilities are rated as efficient units. Benchmarking must credit utilities for improvements in service delivery. This study measures the performance of 20 urban water utilities using data from an Asian Development Bank survey of Indian water utilities in 2005. It applies data envelopment analysis to measure the performance of utilities. The results reveal that incorporation of a quality dimension into the analysis significantly increases the average performance of utilities. The difference between conventional quantity-based measures and quality-adjusted estimates implies that there are significant opportunity costs of maintaining the quality of services in water delivery.