969 resultados para Yeast two hybridization
Resumo:
Many organelles exist in an equilibrium of fragmentation into smaller units and fusion into larger structures, which is coordinated with cell division, the increase in cell mass, and envi¬ronmental conditions. In yeast cells, organelle homeostasis can be studied using the yeast vacuole (lysosome) as a model system. Yeast vacuoles are the main compartment for degrada¬tion of cellular proteins and storage of nutrients, ions and metabolites. Fission and fusion of vacuoles can be induced by hyper- and hypotonic shock in vivo, respectively, and have also been reconstituted in vitro using isolated vacuoles. The conserved serine/threonine kinase TOR (target of rapamycin) is a central nutrient sensor and regulates cell growth and metabolism. In yeast, there are two TOR proteins, Torlp and Tor2p, which are part of larger protein complexes, TORCI and TORC2. Only TORCI is rapamycin-sensitive. Disregulation of TOR signaling is linked to a multitude of diseases in humans, e.g. cancer, neurodegenerative diseases and metabolic syndrome. It has been shown that TORCI localizes to the vacuole membrane, and recent findings of our laboratory demonstrated that TORCI positively regulates vacuole fragmentation. This suggests that the fragmentation machinery should contain target proteins phosphorylated by TORCI. I explored the rapamycin-and fission-dependent vacuolar phosphoproteome during frag¬mentation, using a label-free mass-spectrometry approach. I identified many vacuolar factors whose phosphorylation was downregulated in a TORCI- and fission-dependent manner. Among them were known protein complexes that are functionally linked to fission or fusion, like the HOPS, VTC and FAB1 complexes. Hence, TORCI-dependent phosphorylations might positively regulate vacuole fission. Several candidates were chosen for detailed microscopic analysis of in vivo vacuole frag-mentation, using deletion mutants. I was able to identify novel factors not previously linked to fission phenotypes, e.g. the SEA complex, Pib2, and several vacuolar amino acid transporters. Transport of neutral and basic amino acids across the membrane seems to control vacuole fission, possibly via TORCI. I analyzed vacuolar fluxes of amino acids in wildtype yeast cells and found evidence for a selective vacuolar export of basic amino acids upon hyperosmotic stress. This leads me to propose a model where vacuolar export of amino acids is necessary to reshape the organelle under salt stress. - Le nombre et la taille de certaines organelles peut être déterminé par un équilibre entre la fragmentation qui produit des unités plus petites et la fusion qui génère des structures plus larges. Cet équilibre est coordonné avec la division cellulaire, l'augmentation de la masse cellulaire, et les conditions environnementales. Dans des cellules de levure, l'homéostasie des organelles peut être étudié à l'aide d'un système modèle, la vacuole de levure (lysosome). Les vacuoles constituent le principal compartiment de la dégradation des protéines et de stockage des nutriments, des ions et des métabolites. La fragmentation et la fusion des vacuoles peuvent être respectivement induites par un traitement hyper- ou hypo-tonique dans les cellules vivantes. Ces processus ont également été reconstitués in vitro en utilisant des vacuoles isolées. La sérine/thréonine kinase conservée TOR (target of rapamycin/cible de la rapamycine) est un senseur de nutriments majeur qui régule la croissance cellulaire et le métabolisme. Chez la levure, il existe deux protéines TOR, Torlp et Tor2p, qui sont les constituants de plus grands complexes de protéines, TORCI et TORC2. TORCI est spécifiquement inhibé par la rapamycine. Une dysrégulation de la signalisation de TOR est liée à une multitude de maladies chez l'homme comme le cancer, les maladies neurodégénératives et le syndrome métabolique. Il a été montré que TORCI se localise à la membrane vacuolaire et les découvertes récentes de notre laboratoire ont montré que TORCI régule positivement la fragmentation de la vacuole. Ceci suggère que le mécanisme de fragmentation doit être contrôlé par la phosphorylation de certaines protéines cibles de TORCI. J'ai exploré le phosphoprotéome vacuolaire lors de la fragmentation, en présence ou absence de rapamycine et dans des conditions provoquant la fragmentation des organelles. La méthode choisie pour réaliser la première partie de ce projet a été la spectrométrie de masse différentielle sans marquage. J'ai ainsi identifié plusieurs facteurs vacuolaires dont la phosphorylation est régulée d'une manière dépendante de TORCI et de la fragmentation. Parmi ces facteurs, des complexes protéiques connus qui sont fonctionnellement liées à fragmentation ou la fusion, comme les complexes HOPS, VTC et FAB1 ont été mis en évidence. Par conséquent, la phosphorylation dépendante de TORCI peut réguler positivement la fragmentation des vacuoles. Plusieurs candidats ont été choisis pour une analyse microscopique détaillée de la fragmentation vacuolaire in vivo en utilisant des mutants de délétion. J'ai été en mesure d'identifier de nouveaux facteurs qui n'avaient pas été encore associés à des phénotypes de fragmentation tels que les complexes SEA, Pib2p, ainsi que plusieurs transporteurs vacuolaires d'acides aminés. Le transport des acides aminés à travers la membrane semble contrôler la fragmentation de la vacuole. Puisque ces transporteurs sont phosphorylés par TORCI, ces résultats semblent confirmer la
Resumo:
OBJECTIVE: To develop and compare two new technologies for diagnosing a contiguous gene syndrome, the Williams-Beuren syndrome (WBS). METHODS: The first proposed method, named paralogous sequence quantification (PSQ), is based on the use of paralogous sequences located on different chromosomes and quantification of specific mismatches present at these loci using pyrosequencing technology. The second exploits quantitative real time polymerase chain reaction (QPCR) to assess the relative quantity of an analysed locus. RESULTS: A correct and unambiguous diagnosis was obtained for 100% of the analysed samples with either technique (n = 165 and n = 155, respectively). These methods allowed the identification of two patients with atypical deletions in a cohort of 182 WBS patients. Both patients presented with mild facial anomalies, mild mental retardation with impaired visuospatial cognition, supravalvar aortic stenosis, and normal growth indices. These observations are consistent with the involvement of GTF2IRD1 or GTF2I in some of the WBS facial features. CONCLUSIONS: Both PSQ and QPCR are robust, easy to interpret, and simple to set up. They represent a competitive alternative for the diagnosis of segmental aneuploidies in clinical laboratories. They have advantages over fluorescence in situ hybridisation or microsatellites/SNP genotyping for detecting short segmental aneuploidies as the former is costly and labour intensive while the latter depends on the informativeness of the polymorphisms.
Resumo:
The quantification of gene expression at the single cell level uncovers novel regulatory mechanisms obscured in measurements performed at the population level. Two methods based on microscopy and flow cytometry are presented to demonstrate how such data can be acquired. The expression of a fluorescent reporter induced upon activation of the high osmolarity glycerol MAPK pathway in yeast is used as an example. The specific advantages of each method are highlighted. Flow cytometry measures a large number of cells (10,000) and provides a direct measure of the dynamics of protein expression independent of the slow maturation kinetics of the fluorescent protein. Imaging of living cells by microscopy is by contrast limited to the measurement of the matured form of the reporter in fewer cells. However, the data sets generated by this technique can be extremely rich thanks to the combinations of multiple reporters and to the spatial and temporal information obtained from individual cells. The combination of these two measurement methods can deliver new insights on the regulation of protein expression by signaling pathways.
Resumo:
Oil-collecting bees are found worldwide and always in association with particular oil-producing flowers. In the Western Palearctic, three oil-collecting bee species within the genus Macropis (Hymenoptera, Melittidae) interact in a tight pollination mutualism with species of the only European oil-producing plant genus Lysimachia L. (Myrsinaceae). Two of these oil-collecting bees (Macropis europaea and Macropis fulvipes) show overlapping geographic distributions, comparable morphologies, and similar ecological characteristics (e.g., habitat type, floral preferences). In view of these similarities, we presume that hybridization should occur between the two species unless potential variation among the species' ecological niches prevents it, simultaneously decreasing competition for resources. Using modern genetic analyses and ecological niche modeling on a large bee sampling throughout Europe, we discuss new perspectives on the ecology and evolutionary history of this mutualism.
Resumo:
Abstract: The fission yeast Schizosaccharomyces pombe has proven to be an excellent model system for the study of eukaryotic cell cycle control. S. pombe cells are rod-shaped and grow mainly by elongation at their tips. They divide by the means of a centrallyplaced division septum which provides two daughter cells of equal size. S. pombe cytokinesis begins at mitotic entry, when the division site is defined by formation of the contractile acto-myosin ring (CAR). Formation of the division septum is triggered at the end of mitosis by the spindle pole body (SPB) associated septation initiation network (SIN) proteins. SIN signalling requires activation of the GTPase spg1p, whose nucleotide status is regulated by the bipartite GAP byr4pcdc16p. Removal of cdc16p from the SPB during early mitosis is thought to allow priming of the SIN by association of cdc7p with both SPBs. During anaphase cdc7p is retained on the new SPB, which also recruits the kinase sid1 p and cdc14p, while the old SP8 reassembles the byr4-cdc16p GAP and is presumed not to signal; SPB asymmetry persists throughout anaphase. The trigger for inactivation of SIN signalling at the new SPB is unknown. This study has concentrated upon cdc16p. We have undertaken the analysis of the localisation of cdc16p using time-lapse microscopy. We have observed that the localisation of cdc16p is regulated at different transitions. We have shown that cdc16p is removed from the SPB prior to the onset of spindle formation and that it reappears asymmetrically at the beginning of anaphase B. We have also demonstrated that the resetting of the SIN at the new SPB is linked to completion of CAR contraction and septum formation. We propose the existence of a mechanism that monitors cytokinesis and that couples the activity of the SI N with the presence of the CAR. During the biochemical characterization of cdc16p, We have found that it is an unstable protein and that it is subjected to polyubiquitination by the SCF and proteasomal degradation. Together, these observations help to shed new light upon the mechanisms by which cytokinesis is regulated in S. pombe. Résumé: La levure Schizosaccharomyces pombe est un excellent organisme modèle pour l'étude du cycle cellulaire eucaryote. Les cellules S. pombe ont la forme de bâtonnets et croissent par l'allongement de leurs extrémités. Elles se divisent en formant, en leur milieu une paroi cellulaire, appelé septum, permettant ainsi l'obtention de deux cellules filles de même taille. Chez S. pombe, la cytokinèse commence en début de mitose lorsque le site de division est déterminé par la formation d'un anneau d'acto-myosine. Le septum, lui, est formé uniquement en fin de mitose par la contraction de l'anneau d'actomyosine. Cette contraction est sous le contrôle d'un réseau de signalisation cellulaire appelé le «réseau d'initiation de synthèse du septum » ou « septation initiation network » (SIN), qui se situe sur les pôles du fuseau mitotique. L'activation du SIN dépend d'une GTPase appelé spg1p dont le statut nucléotidique dépend des protéines cdclóp et byr4p qui forment un complexe qui favorise l'hydrolyse du GTP en GDP. En début de mitose, cdc16p ne se situe plus sur les poles du fuseau mitotique. La GTPase spg1p se retrouve donc principalement sous sa forme couplée au GTP, ce quí va permettre son interaction avec la kinase cdc7p. Cette protéine ainsi que deux autres kinases sid2p (avec mob1p) et sid1p (avec cdc14p) permettent la transmission du signal d'initiation de la contraction de l'anneau d'acto-myosine en fin d'anaphase. Pendant l'anaphase, cdc7p, sid1 p et cdc14p localisent sur un des deux pôles du fuseau mitotique. Il en est de même pour cdc1p et by14p et le pôle contenant cdc16p et byr4p est toujours différent de celui ou les régulateurs positifs du SIN se situent. En fin de cytokinèse, cdc16 et byr4p se retrouvent à nouveau sur chaque pôle des deux cellules filles. Dans cette étude, nous nous sommes concentrés sur l'analyse de la localisation de cdc16p pendant la mitose en utilisant une technique de microscopie en temps réel. Nous avons été en mesure de déterminer que le départ de cdc16p du pole s'effectue juste avant la formation du fuseau mitotique. Nous avons aussi découvert que la localisation asymétrique des composants du SIN dépend fortement de l'entrée en anaphase B. Finalement, Nous avons montré que distribution asymétrique des composants du SIN sur les pôles du fuseau mitotique dépendait aussi fortement de !a présence de l'anneau d'acto-myosine. Ceci nous permet donc de proposer l'existence d'un mécanisme cellulaire qui permet de s'assurer que la cytokinèse est achevée avant de diminuer la signalisation du SIN. Par ailleurs, des études biochimiques nous ont permis de montrer que cdc16p est dégradé par le proteosome. Ces travaux ont permis la découverte de nouveaux modes de régulation du SIN.
Resumo:
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Resumo:
During the Pleistocene glaciations, the Alps were an efficient barrier to gene flow between isolated populations, often leading to allopatric speciation. Afterwards, the Alps strongly influenced the post-glacial recolonization of Europe and represent a major suture zone between differentiated populations. Two hybrid zones in the Swiss and French Alps between genetically and chromosomally well-differentiated species-the Valais shrew, Sorex antinorii, and the common shrew, S. araneus-were studied karyotypically and by analyzing the distribution of seven microsatellite loci. In the center of the Haslital hybrid zone the two species coexist over a distance of 900 m. Hybrid karyotypes, among them the most complex known in Sorex, are rare. F-statistics based on microsatellite data revealed a strong heterozygote deficit only in the center of the zone, due to the sympatric distribution of the two species with little hybridization between them. Structuring within the species (both F(IS) and F(ST)) was low. An hierarchical analysis showed a high level of interspecific differentiation. Results were compared with those previously reported in another hybrid zone located at Les Houches in the French Alps. Genetic structuring within and between species was comparable in both hybrid zones, although chromosomal incompatibilities are more important in Haslital, where a linkage block of the race-specific chromosomes should additionally impede gene flow. Evidence for a more restricted gene flow in Haslital comes from the genetically intermediate hybrid karyotypes, whereas in Les Houches, hybrid karyotypes are genetically identical to individuals of the pure karyotypic races. Genic and chromosomal introgression was observed in Les Houches, but not in Haslital. The possible influence of a river, separating the two species at Les Houches, on gene flow is discussed.
Resumo:
We report on two patients with de novo subtelomeric terminal deletion of chromosome 6p. Patient 1 is an 8-month-old female born with normal growth parameters, typical facial features of 6pter deletion, bilateral corectopia, and protruding tongue. She has severe developmental delay, profound bilateral neurosensory deafness, poor visual contact, and hypsarrhythmia since the age of 6 months. Patient 2 is a 5-year-old male born with normal growth parameters and unilateral hip dysplasia; he has a characteristic facial phenotype, bilateral embryotoxon, and moderate mental retardation. Further characterization of the deletion, using high-resolution array comparative genomic hybridization (array-CGH; Agilent Human Genome kit 244 K), revealed that Patient 1 has a 8.1 Mb 6pter-6p24.3 deletion associated with a contiguous 5.8 Mb 6p24.3-6p24.1 duplication and Patient 2 a 5.7 Mb 6pter-6p25.1 deletion partially overlapping with that of Patient 1. Complementary FISH and array analysis showed that the inv del dup(6) in Patient 1 originated de novo. Our results demonstrate that simple rearrangements are often more complex than defined by standard techniques. We also discuss genotype-phenotype correlations including previously reported cases of deletion 6p.
Resumo:
Invasive candidiasis is the most commonly reported invasive fungal infection worldwide. Although Candida albicans remains the main cause, the incidence of emerging Candida species, such as C. parapsilosis is increasing. It has been postulated that C. parapsilosis clinical isolates result from a recent global expansion of a virulent clone. However, the availability of a single genome for this species has so far prevented testing this hypothesis at genomic scales. We present here the sequence of three additional strains from clinical and environmental samples. Our analyses reveal unexpected patterns of genomic variation, shared among distant strains, that argue against the clonal expansion hypothesis. All strains carry independent expansions involving an arsenite transporter homolog, pointing to the existence of directional selection in the environment, and independent origins of the two clinical isolates. Furthermore, we report the first evidence for the existence of recombination in this species. Altogether, our results shed new light onto the dynamics of genome evolution in C. parapsilosis.
Resumo:
Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.
Resumo:
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.
Resumo:
Clear cell papillary renal cell carcinoma (ccpRCC) and renal angiomyoadenomatous tumor (RAT) share morphologic similarities with clear cell (ccRCC) and papillary RCC (pRCC). It is a matter of controversy whether their morphologic, immunophenotypic, and molecular features allow the definition of a separate renal carcinoma entity. The aim of our project was to investigate specific renal immunohistochemical biomarkers involved in the hypoxia-inducible factor pathway and mutations in the VHL gene to clarify the relationship between ccpRCC and RAT. We investigated 28 ccpRCC and 9 RAT samples by immunohistochemistry using 25 markers. VHL gene mutations and allele losses were investigated by Sanger sequencing and fluorescence in situ hybridization. Clinical follow-up data were obtained for a subset of the patients. No tumor recurrence or tumor-related death was observed in any of the patients. Immunohistochemistry and molecular analyses led to the reclassification of 3 tumors as ccRCC and TFE3 translocation carcinomas. The immunohistochemical profile of ccpRCC and RAT samples was very similar but not identical, differing from both ccRCC and pRCC. Especially, the parafibromin and hKIM-1 expression exhibited differences in ccpRCC/RAT compared with ccRCC and pRCC. Genetic analysis revealed VHL mutations in 2/27 (7%) and 1/7 (14%) ccpRCC and RAT samples, respectively. Fluorescence in situ hybridization analysis disclosed a 3p loss in 2/20 (10%) ccpRCC samples. ccpRCC and RAT have a specific morphologic and immunohistochemical profile, but they share similarities with the more aggressive renal tumors. On the basis of our results, we regard ccpRCC/RAT as a distinct entity of RCCs.
Resumo:
In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales.
Resumo:
To identify formulations of biological agents that enable survival, stability and a good surface distribution of the antagonistic agent, studies that test different application vehicles are necessary. The efficiency of two killer yeasts, Wickerhamomyces anomalus (strain 422) and Meyerozyma guilliermondii (strain 443), associated with five different application vehicles, was assessed for the protection of postharvest papayas. In this study, after 90 days of incubation at 4ºC, W. anomalus (strain 422) and M. guilliermondii (strain 443) were viable with all application vehicles tested. Fruits treated with different formulations (yeasts + application vehicles) had a decreased severity of disease (by at least 30%) compared with untreated fruits. The treatment with W. anomalus (strain 422) + 2% starch lowered disease occurrence by 48.3%. The most efficient treatments using M. guilliermondii (strain 443) were those with 2% gelatin or 2% liquid carnauba wax, both of which reduced anthracnose by 50% in postharvest papayas. Electron micrographs of the surface tissues of the treated fruits showed that all application vehicles provided excellent adhesion of the yeast to the surface. Formulations based on starch (2%), gelatin (2%) and carnauba wax (2%) were the most efficient at controlling fungal diseases in postharvest papayas.
Resumo:
Hybridization between B. involutum and B. weddellii (Orchidaceae) has been first observed in the Serra do Cipó, Minas Gerais State, Brazil, the hybrid being described as B. ×cipoense Borba & Semir. In this study, allozime electrophoresis was used to test the hypothesis of occurrence of hybridization between these two species, as suggested by morphological characters, in the Chapada Diamantina, Bahia State, Brazil. The lack of a diagnostic locus does not allow definite confirmation of the natural hybridization, although this hypotheses is reinforced by the absence of exclusive alleles in the putative hybrid individuals. The existence of several different genotypes points out to either population derived from multiple hybridization events or the hybrids produced offspring. Homozigosity in some morphologically intermediate individuals of alelles which are exclusive to B. involutum and high genetic similarity between them reinforce the hypotheses of introgression in B. involutum, but not in B. weddellii. Genetic variability observed in B. weddellii (He = 0.21) and B. involutum (He = 0.35) is high. Bulbophyllum weddellii and B. involutum presented very high genetic similarity values (0.94). These species, although vegetatively similar, have been placed in different sections based on floral morphology. The results suggest that these species may be more related than previously supposed.