973 resultados para Word error rate
Resumo:
A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution. The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions.
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
Greek speakers say "ovpa", Germans "schwanz'' and the French "queue'' to describe what English speakers call a 'tail', but all of these languages use a related form of 'two' to describe the number after one. Among more than 100 Indo-European languages and dialects, the words for some meanings (such as 'tail') evolve rapidly, being expressed across languages by dozens of unrelated words, while others evolve much more slowly-such as the number 'two', for which all Indo-European language speakers use the same related word-form(1). No general linguistic mechanism has been advanced to explain this striking variation in rates of lexical replacement among meanings. Here we use four large and divergent language corpora (English(2), Spanish(3), Russian(4) and Greek(5)) and a comparative database of 200 fundamental vocabulary meanings in 87 Indo-European languages(6) to show that the frequency with which these words are used in modern language predicts their rate of replacement over thousands of years of Indo-European language evolution. Across all 200 meanings, frequently used words evolve at slower rates and infrequently used words evolve more rapidly. This relationship holds separately and identically across parts of speech for each of the four language corpora, and accounts for approximately 50% of the variation in historical rates of lexical replacement. We propose that the frequency with which specific words are used in everyday language exerts a general and law-like influence on their rates of evolution. Our findings are consistent with social models of word change that emphasize the role of selection, and suggest that owing to the ways that humans use language, some words will evolve slowly and others rapidly across all languages.
Resumo:
Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Holder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multidimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.
Resumo:
In this paper, we generalise a previously-described model of the error-prone polymerase chain reaction (PCR) reaction to conditions of arbitrarily variable amplification efficiency and initial population size. Generalisation of the model to these conditions improves the correspondence to observed and expected behaviours of PCR, and restricts the extent to which the model may explore sequence space for a prescribed set of parameters. Error-prone PCR in realistic reaction conditions is predicted to be less effective at generating grossly divergent sequences than the original model. The estimate of mutation rate per cycle by sampling sequences from an in vitro PCR experiment is correspondingly affected by the choice of model and parameters. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Research on the production of relative clauses (RCs) has shown that in English, although children start using intransitive RCs at an earlier age, more complex, bi-propositional object RCs appear later (Hamburger & Crain, 1982; Diessel and Tomasello, 2005), and children use resumptive pronouns both in acceptable and unacceptable ways (McKee, McDaniel, & Snedeker, 1998; McKee & McDaniel, 2001). To date, it is unclear whether or not the same picture emerges in Turkish, a language with an SOV word-order and overt case marking. Some studies suggested that subject RCs are more frequent in adults and children (Slobin, 1986) and yield a better performance than object RCs (Özcan, 1996), but others reported the opposite pattern (Ekmekçi, 1990). Our study addresses this issue in Turkish children and adults, and uses participants’ errors to account for the emerging asymmetry between subject and object RCs. 37 5-to-8 year old monolingual Turkish children and 23 adult controls participated in a novel elicitation task involving cards, each consisting of four different pictures (see Figure 1). There were two sets of cards, one for the participant and one for the researcher. The former had animals with accessories (e.g., a hat) whereas the latter had no accessories. Participants were instructed to hold their card without showing it to the researcher and describe the animals with particular accessories. This prompted the use of subject and object RCs. The researcher had to identify the animals in her card (see Figure 2). A preliminary repeated measures ANOVA with the factor Group (pre-school, primary-school children) showed no differences between the groups in the use of RCs (p>.1), who were therefore collapsed into one for further analyses. A repeated measures ANOVA with the factors Group (children, adults) and RC-Type (Subject, Object) showed that children used fewer RCs than adults (F(1,58)=7.54, p<.01), and both groups used fewer object than subject RCs (F(1,58)=22.46, p<.001), but there was no Group by RC-Type interaction (see Figure 3). A similar ANOVA on the rate of grammatical RCs showed a main effect of Group (F(1,58)=77.25, p<.001), a main effect of RC-Type (F(1,58)=66.33, p<.001), and an interaction of Group by RC-Type (F(1,58)=64.6, p<.001) (see Figure 4). Children made more errors than adults in object RCs (F(1,58)=87.01, p<.001), and children made more errors in object compared to subject RCs (F(1,36)=106.35, p<.001), but adults did not show this asymmetry. The error analysis revealed that children systematically avoided the object-relativizing morpheme –DIK, which requires possessive agreement with the genitive-marked subject. They also used resumptive pronouns and resumptive full-DPs in the extraction site similarly to English children (see Figure 5). These findings are in line with Slobin (1986) and Özcan (1996). Children’s errors suggest that they avoid morphosyntactic complexity of object RCs and try to preserve the canonical word order by inserting resumptive pronouns in the extraction site. Finally, cross-linguistic similarity in the acquisition of RCs in typologically different languages suggests a higher accessibility of subject RCs both at the structural (Keenan and Comrie, 1977) and conceptual level (Bock and Warren, 1986).
Resumo:
Non-word repetition (NWR) was investigated in adolescents with typical development, Specific Language Impairment (SLI) and Autism Plus language Impairment (ALI) (n = 17, 13, 16, and mean age 14;4, 15;4, 14;8 respectively). The study evaluated the hypothesis that poor NWR performance in both groups indicates an overlapping language phenotype (Kjelgaard & Tager-Flusberg, 2001). Performance was investigated both quantitatively, e.g. overall error rates, and qualitatively, e.g. effect of length on repetition, proportion of errors affecting phonological structure, and proportion of consonant substitutions involving manner changes. Findings were consistent with previous research (Whitehouse, Barry, & Bishop, 2008) demonstrating a greater effect of length in the SLI group than the ALI group, which may be due to greater short-term memory limitations. In addition, an automated count of phoneme errors identified poorer performance in the SLI group than the ALI group. These findings indicate differences in the language profiles of individuals with SLI and ALI, but do not rule out a partial overlap. Errors affecting phonological structure were relatively frequent, accounting for around 40% of phonemic errors, but less frequent than straight Consonant-for-Consonant or vowel-for-vowel substitutions. It is proposed that these two different types of errors may reflect separate contributory mechanisms. Around 50% of consonant substitutions in the clinical groups involved manner changes, suggesting poor auditory-perceptual encoding. From a clinical perspective algorithms which automatically count phoneme errors may enhance sensitivity of NWR as a diagnostic marker of language impairment. Learning outcomes: Readers will be able to (1) describe and evaluate the hypothesis that there is a phenotypic overlap between SLI and Autism Spectrum Disorders (2) describe differences in the NWR performance of adolescents with SLI and ALI, and discuss whether these differences support or refute the phenotypic overlap hypothesis, and (3) understand how computational algorithms such as the Levenshtein Distance may be used to analyse NWR data.
Resumo:
Abstract I argue for the following claims: [1] all uses of I (the word ‘I’ or thought-element I) are absolutely immune to error through misidentification relative to I. [2] no genuine use of I can fail to refer. Nevertheless [3] I isn’t univocal: it doesn’t always refer to the same thing, or kind of thing, even in the thought or speech of a single person. This is so even though [4] I always refers to its user, the subject of experience who speaks or thinks, and although [5] if I’m thinking about something specifically as myself, I can’t fail to be thinking of myself, and although [6] a genuine understanding use of I always involves the subject thinking of itself as itself, whatever else it does or doesn’t involve, and although [7] if I take myself to be thinking about myself, then I am thinking about myself.
Resumo:
Background: Word deafness is a rare condition where pathologically degraded speech perception results in impaired repetition and comprehension but otherwise intact linguistic skills. Although impaired linguistic systems in aphasias resulting from damage to the neural language system (here termed central impairments), have been consistently shown to be amenable to external influences such as linguistic or contextual information (e.g. cueing effects in naming), it is not known whether similar influences can be shown for aphasia arising from damage to a perceptual system (here termed peripheral impairments). Aims: This study aimed to investigate the extent to which pathologically degraded speech perception could be facilitated or disrupted by providing visual as well as auditory information. Methods and Procedures: In three word repetition tasks, the participant with word deafness (AB) repeated words under different conditions: words were repeated in the context of a pictorial or written target, a distractor (semantic, unrelated, rhyme or phonological neighbour) or a blank page (nothing). Accuracy and error types were analysed. Results: AB was impaired at repetition in the blank condition, confirming her degraded speech perception. Repetition was significantly facilitated when accompanied by a picture or written example of the word and significantly impaired by the presence of a written rhyme. Errors in the blank condition were primarily formal whereas errors in the rhyme condition were primarily miscues (saying the distractor word rather than the target). Conclusions: Cross-modal input can both facilitate and further disrupt repetition in word deafness. The cognitive mechanisms behind these findings are discussed. Both top-down influence from the lexical layer on perceptual processes as well as intra-lexical competition within the lexical layer may play a role.
Resumo:
Lava flows can produce changes in topography on the order of 10s-100s of metres. A knowledge of the resulting volume change provides evidence about the dynamics of an eruption. We present a method to measure topographic changes from the differential InSAR phase delays caused by the height differences between the current topography and a Digital Elevation Model (DEM). This does not require a pre-event SAR image, so it does not rely on interferometric phase remaining coherent during eruption and emplacement. Synthetic tests predicts that we can estimate lava thickness of as little as �9 m, given a minimum of 5 interferograms with suitably large orbital baseine separations. In the case of continuous motion, such as lava flow subsidence, we invert interferometric phase simultaneously for topographic change and displacement. We demonstrate the method using data from Santiaguito volcano, Guatemala, and measure increases in lava thickness of up to 140 m between 2000 and 2009, largely associated with activity between 2000 and 2005. We find a mean extrusion rate of 0.43 +/- 0.06 m3/s, which lies within the error bounds of the longer term extrusion rate between 1922-2000. The thickest and youngest parts of the flow deposit were shown to be subsiding at an average rate of �-6 cm/yr. This is the first time that flow thickness and subsidence have been measured simultaneously. We expect this method to be suitable for measurment of landslides and other mass flow deposits as well as lava flows.
Resumo:
This paper considers supply dynamics in the context of the Irish residential market. The analysis, in a multiple error-correction framework, reveals that although developers did respond to disequilibrium in supply, the rate of adjustment was relatively slow. In contrast, however, disequilibrium in demand did not impact upon supply, suggesting that inelastic supply conditions could explain the prolonged nature of the boom in the Irish market. Increased elasticity in the later stages of the boom may have been a contributory factor in the extent of the house price falls observed in recent years.
Resumo:
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out-of-sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
Accurate and reliable rain rate estimates are important for various hydrometeorological applications. Consequently, rain sensors of different types have been deployed in many regions. In this work, measurements from different instruments, namely, rain gauge, weather radar, and microwave link, are combined for the first time to estimate with greater accuracy the spatial distribution and intensity of rainfall. The objective is to retrieve the rain rate that is consistent with all these measurements while incorporating the uncertainty associated with the different sources of information. Assuming the problem is not strongly nonlinear, a variational approach is implemented and the Gauss–Newton method is used to minimize the cost function containing proper error estimates from all sensors. Furthermore, the method can be flexibly adapted to additional data sources. The proposed approach is tested using data from 14 rain gauges and 14 operational microwave links located in the Zürich area (Switzerland) to correct the prior rain rate provided by the operational radar rain product from the Swiss meteorological service (MeteoSwiss). A cross-validation approach demonstrates the improvement of rain rate estimates when assimilating rain gauge and microwave link information.
Resumo:
Atmosphere only and ocean only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, non-linearity and observation density of the respective systems. Typical window lengths are 6-12 hours for the atmosphere and 2-10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a more balanced coupled state. This paper investigates how extending the window length in the presence of model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA with differing degrees of coupling. Results are illustrated using an idealized single column model of the coupled atmosphere-ocean system. It is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency between the coupled model used in the outer loop and uncoupled models used in the inner loop.