972 resultados para Wheat blast
Resumo:
Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.
Resumo:
For maximizing the effective applications of remote sensing in crop recognition, crop performance assessment and canopy variables estimation at large areas, it is essential to fully understand the spectral response of canopy to crop development and varying growing conditions. In this paper, the spectral properties of winter wheat canopy under different growth stages and different agronomic conditions were investigated at the field level based on reflectance measurements. It was proved that crop growth and development, nitrogen fertilization rates, nutrient deficit (e.g. lacking any kind of nitrogen, phosphorus and kalium fertilizer or lacking all of them), irrigation frequency and plant density had direct influence on canopy reflectance in 400-900 nm which including the visible/near infrared bands, and resulted in great changes of spectral curves. It was suggested that spectral reflectance of crop canopy can well reflect the growth and development of crop and the impacts from various factors, and was feasible to provide vital information for crop monitoring and assessment. ©2010 IEEE.
Resumo:
Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (Triticum aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.
Resumo:
The rye B chromosome is a supernumerary chromosome that increases in number in its host by directed postmeiotic drive. Two types of rye B chromosomes that had been introduced into common wheat were dissected into separate segments by the gametocidal system to produce a number of rearranged B chromosomes, such as telosomes, terminal deletions and translocations with wheat chromosomes. A total of 13 dissected B chromosomes were isolated in common wheat, and were investigated for their nondisjunction. properties. Rearranged B chromosomes, separated from their B-specific repetitive sequences on the distal part of the long arm, did not undergo nondisjunction, and neither did a translocated wheat chromosome carrying a long-arm distal segment containing the B-specific repetitive sequences. However, such rearranged B chromosomes, missing their B-specific sequences could undergo nondisjunction when they coexisted with the standard B chromosome or a wheat chromosome carrying the B-specific sequences. Deficiencies of the short arm did not completely abolish the nondisjunction properties of the B chromosome, but did reduce the frequency of nondisjunction. These results confirmed previous suggestions that the directed nondisjunction of the rye B chromosome is controlled by two elements, pericentromeric sticking sites and a trans-acting element carried at the distal region of the long arm of the B chromosome. Additionally, it is now shown that the distal region of the long arm of the B chromosome which provides this function is that which carries the B-specific repetitive sequences.
Resumo:
Wheat straw was treated with microwave for 4 min and 8 min at a power of 750 W and frequency of 2,450 MHz. Chemical compositions of untreated, 4 min treated and 8 min treated Straws were analyzed and in sacco degradabilities of all these straws in yak rumens were measured. Microwave treatment didn't significantly (p > 0.05) affect the chemical composition of the straw. In sacco dry matter (DM) degradability of the straw after 18 h incubation in rumen was significantly (p < 0.01) improved by microwave treatment. In sacco crude protein (CP) degradability of the straw was not (p > 0.05) affected by microwave treatment. In sacco organic matter (OM) degradability of the straw was increased (p < 0.01) by around 20% for both the 4 min and 8 min microwave treatment, that of acid detergent fibre (ADF) was increased (p < 0.01) by 61.6% and 62.8%, and that of ash free ADF was enhanced by 72.1% and 69.6% for the 4 min and 8 min microwave treatment respectively. No significant difference was observed between the 4 min and 8 min microwave treatment on the degradability of DM, OM, CP, ADF and ash-free ADF of the straw.
Resumo:
Grain yields of over 14 Mg ha(-1) were reported in 1978 for spring wheat (Triticum aestivum L.) grown in Northwest China. Understanding the circumstances under which this record yield was achieved may be useful in defining the key factors that lead to high grain yields and in determining the limits to wheat yield. A relatively simple, mechanistic model was used in an effort to simulate the record yield. The model was used as a framework in which various crop traits could be adjusted to match the observed crop growth. The weather that was characterized by cool temperatures and high levels of solar radiation, proved to be especially important in allowing a full-season crop to achieve record yields. Variables defining plant development in the model also had to be set to describe the high yielding cultivar grown in China. Leaf development was defined by the length of a phyllochron, which was set equal to 78 TU (thermal units, base temperature equal to 0 degrees C) based on independent data. The description of grain fill had to be defined to match simulation results with the observations. Two variables, length of the grain-fill period and the grain growth rate, were set in response to the unique traits of this cultivar and the low temperatures during grain development. These simulations led to important suggestions for examining the interaction between cool temperature regimes and developmental traits of wheat cultivars. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
2007
Resumo:
O método BLAST para determinação de similaridades entre sequências biológicas. Score e matrizes de substituição. Determinação de matrizes de substituição BLOSUM. Determinação de matrizes de substituição PAM. Resultados da teoria Estatística de comparação local de sequências. O Algoritmo usado por BLAST. NCBI-BLAST. Exemplo de busca.
Resumo:
Este trabalho tem como objetivos apresentar de forma sucinta o funcionamento do modelo CERES-Wheat inserido na plataforma DSSAT 3.5, assim como apresentar os resultados obtidos das simulações realizadas com o modelo e os observados em experimento de campo, em especial a sua capacidade de detectar os efeitos da aplicação de N sob a fenologia e produtividade de grãos do trigo sob irrigação.