962 resultados para Waterlogged soils
Resumo:
The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.
Resumo:
The constructional activities in the coastal belt of our country often demand deep foundations because of the poor engineering properties and the related problems arising from weak soil at shallow depths.The soil profile in coastal area often consists of very loose sandy soils extending to a depth of 3 to 4 m from the ground level underlain by clayey soils of medium consistency.The very low shearing resistance of the foundation bed causes local as well as punching shear failure.Hence structures built on these soils may suffer from excessive settlements.This type of soil profile is very common in coastal areas of Kerala,especially in Cochin. Further,the high water table and limited depth of the top sandy layer in these areas restrict the depth of foundation thereby further reducing the safe bearing capacity.
Resumo:
Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.
Resumo:
Impact of teak and eucalypt monoculture on soils in the highlands of kerala .The thesis is arranged under nine chapters. The first chapter introduces the topic, reviews the literature pertaining to the study and presents the aims and objectives of the study. The second chapter briefly describes the study location. experimental design and sampling methodology. The third chapter deals with physical properties of plantation soils. The fourth and fifth chapters cover the chemical properties and macro- and micro nutrient status in plantation soils. The organic matter fractions in plantation soils are described in sixth chapter. First part of the seventh chapter presents the results of factor analysis and the second part deals with fertility index of plantations. All these chapters are self-contained with separate introduction, materials and methods and results and discussions. A general discussion of the results is included in the eighth chapter. The ninth chapter includes conclusions and summary A study that traces the variation in physical and chemical properties and nutrient status of teak soils with age of plantations, till the end of a rotation period is thus highly pertinent. Such a study, with an adjacent natural forest as a reference stand will not only generate information that will help us to understand the pattern of variation in soil properties, but will also aid us in formulating better management strategies. The data generated by such a study will be more useful if accompanied by information on soil changes following a short rotation plantation crop. As Eucalypt, a short rotation crop is the second major plantation crop in Kerala, it was chosen for the study.
Resumo:
Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest
Resumo:
Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations
Resumo:
Actinomycetes are gram-positive, free-living, saprophytic bacteria widely distributed in soil, water and colonizing plants showing marked chemical and morphological diversity. They are potential source of many bioactive compounds, which have diverse clinical effects and important applications in human medicine. In the present work, we have studied some of the physiological and biochemical characteristics of 36 actinomycete strains isolated from the shola soils of tropical montane forest; a relatively unexplored biodiversity hotspot. Ability of actinomycetes isolates to ferment and produce acids from various carbohydrate sources such as innositol, mannose, sorbitol, galactose, mannitol, xylose, rhamnose, arabinose, lactose and fructose were studied. Almost all the carbon compounds were utilized by one or other actinomycete isolates. The most preferred carbon sources were found to be xylose (94.44%) followed by fructose and mannose (91.66%). Only 41.76% of the isolates were able to ferment lactose. The ability of actinomycetes isolates to decompose protein and amino acid differ considerably. 72.22% of the isolates were able to decompose milk protein casein and 61.11% of the isolates decompose tyrosine. Only 8.33% of the strains were able to decompose amino acid hypoxanthine and none of them were able to decompose amino acid xanthine. Potential of the actinomycetes isolates to reduce esculin, urea and hippurate and to resist lysozyme was also checked. 91.66% of the isolates showed ability to decompose esculin and 63.88% of the isolates had the capacity to produce urease and to decompose urea. Only 25% of the isolate were able to decompose hippurate and 94.44% showed lysozyme resistance
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
TThe invention of novel antibiotics and other bioactive microbial metabolites continues to be an important aim in new drug discovery programmes. Actinomycetes have the potential to synthesize lots of diverse biologically vigorous secondary metabolites and in the last decades actinomycetes became the most productive source for antibiotics. Therefore in the present study we analyze the antibacterial activity of the actinomycetes isolated from grassland soil samples of Tropical Montane forest. A total of 33 actinomycete strains isolated were characterized and screened for antibacterial activities using well diffusion method against six specific pathogenic organisms. Identification of the isolates revealed that the majority of them were belonging to Streptomycetes followed by Nocardia, Micromonospora, Pseudonocardia, Streptosporangium, Nocardiopsis and Saccharomonospora. Among the 33 isolates, Gr1 strain showed antagonistic activity against all checked pathogens. Nine strains showed antibacaterial activity against Listeria, Vibrio cholera, Bacillus cereus, Staphylococcus aureus and Salmonella typhi and only 2 strains (Gr1and Gr25) showed antagonism to E. coli. The overall percentage of activity of actinomycetes isolates against each pathogenic bacterium was also calculated. While 63.63% of the actinomycetes were antagoinistic against Listeria, Vibrio cholerae, and Bacillus cereus, 60.6% of them were antagonistic to Staphylococcus aureus. Very few isolates (6.06%) showed antibacterial activity against E. coli. In general most of the actinomycetes isolates were antagonistic to grampositive bacteria such as Listeria, Bacillus and Staphylococcus than Gram-negative bacteria Vibrio cholerae, E. coli and Salmonella
Resumo:
This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.
Resumo:
A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.
Resumo:
In ago-pastoral systems of the semi-arid West African Sahel, targeted applications of ruminant manure to the cropland is a widespread practice to maintain soil productivity. However, studies exploring the decomposition and mineralisation processes of manure under farmers' conditions are scarce. The present research in south-west Niger was undertaken to examine the role of micro-organisms and meso-fauna on in situ release rates of nitrogen (N), phosphorus (P) and potassium (K) from cattle and sheep-goat manure collected from village corrals during the rainy season. The results show tha (1) macro-organisms played a dominant role in the initial phase of manure decomposition; (2) manure decomposition was faster on crusted than on sandy soils; (3) throughout the study N and P release rates closely followed the dry matter decomposition; (4) during the first 6 weeks after application the K concentration in the manure declined much faster than N or P. At the applied dry matter rate of 18.8 Mg ha^-1, the quantities of N, P and K released from the manure during the rainy season were up to 10-fold larger than the annual nutrient uptake of pearl millet (Pennisetum glaucum L.), the dominant crop in the traditional agro-pastoral systems. The results indicate considerable nutrient losses with the scarce but heavy rainfalls which could be alleviated by smaller rates of manure application. Those, however, would require a more labour intensive system of corralling or manure distribution.
Resumo:
Low phosphorus (P) in acid sandy soils of the West African Sudano-Sahelian zone is a major limitation to crop growth. To compare treatment effects on total dry matter (TDM) of crops and plant available P (P-Bray and isotopically exchangeable P), field experiments were carried out for 2 years at four sites where annual rainfall ranged from 560 to 850 mm and topsoil pH varied between 4.2 and 5.6. Main treatments were: (i) crop residue (CR) mulch at 500 and 2000 kg ha^-1, (ii) eight different rates and sources of P and (iii) cereal/legume rotations including millet (Pennisetum glaucum L.), sorhum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). For the two Sahelian sites with large CR-induced differences in TDM, mulching did not modify significantly the soils' buffering capacity for phosphate ions but led to large increases in the intensity factor (C_p) and quantity of directly available soil P (E_1min). In the wetter Sudanian zone lacking effects of CR mulching on TDM mirrored a decline of E_1min with CR. Broadcast application of soluble single superphosphate (SSP) at 13 kg P ha^-1 led to large increases in C_p and quantity of E_1min at all sites which translated in respective TDM increases. The high agronomic efficiency of SSP placement (4 kg P ha^-1) across sites could be explained by consistent increases in the quantity factor which confirms the power of the isotopic exchange method in explaining management effects on crop growth across the region.
Resumo:
A more widespread use of cereal/legume rotations has been suggested as a means to sustainably meet increasing food demands in sub-Saharan West Africa. Enhanced cereal yields following legumes have been attributed to chemical and biological factors such as higher levels of mineral nitrogen (Nmin) and arbuscular mycorrhizae (AM) but also to lower amounts of plant parasitic nematodes. This study was conducted under controlled conditions to examine the relative contribution of AM, plant parasitic nematodes and increased nitrogen (N) and phosphorus (P) availability to cereal/legume rotation effects on two West African soils. Sample soils were taken from field experiments at Gaya (Niger) and Fada (Burkina Faso) supporting continuous cereal and cereal/legume rotation systems and analysed for chemical and biological parameters. Average increases in cereal shoot dry matter (DM) of rotation cereals compared with continuous cereals were 490% at Gaya and 550% at Fada. Shoot P concentration of rotation millet was significantly higher than in continuous millet and P uptake in rotation cereals was on average 62.5-fold higher than in continuous cereals. Rotation rhizosphere soils also had higher pH at both sites. For the Fada soil, large increases in Bray1-P and organic P were observed in bulk and rhizosphere soils. Plant parasitic nematodes in roots of continuous cereals were 60–80-fold higher than in those of rotation cereals. In both cropping systems mycorrhizal infection rates were similar at 37 days after sowing (DAS) but at 57 DAS AM infection was 10–15% higher in rotation sorghum than in continuous sorghum. This study provides strong evidence that cereal/legume rotations can enhance P nutrition of cereals through improved soil chemical P availability and microbiologically increased P uptake.
Resumo:
The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.