930 resultados para Water quality modelling
Resumo:
White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
Interpretación realizada por las alumnas en prácticas de la Facultad de Traducción e Interpretación, Estíbaliz López-Leiton Trujillo, Danaide Rodríguez Hernández, Esther Ramírez Millares.
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
Green roof mitigation of volume and peak flow-rate of stormwater runoff has been studied extensively. However, due to the common practice of green roof fertilization, there is the potential for introduction of nutrients into local bodies of water. Therefore, this study compares green roof runoff quality with the water quality of precipitation and runoff from a bare shingle roof. The runoff from a demonstration-scale extensive green roof was analyzed during the summer of 2011 for its effect on runoff volume and analyzed during eleven storm events in the fall and winter for concentrations of copper, cadmium, zinc, lead, nitrogen species, total nitrogen, total organic carbon, sulfate, orthophosphate, and other monovalent and divalent ions. The green roof reduced the overall volume of runoff and served as a sink for NO3 - and NH4 +. However, the green roof was also a source for the pollutants PO4 3-, SO4 2-, TOC, cations, and total nitrogen. Metals such as zinc and lead showed trends of higher mass loads in the bare roof runoff than in precipitation and green roof runoff, although results were not statistically significant. The green roof also showed trends, although also not statistically significant, of retaining cadmium and copper. With the green roof serving as a source of phosphorous species and a sink for nitrogen species, and appearing to a retain metals and total volume, the life cycle impact analysis shows minimum impacts from the green roof, when compared with precipitation and bare roof runoff, in all but fresh water eutrophication. Therefore, the best environments to install a green roof may be in coastal environments.
Resumo:
Human development causes degradation of stream ecosystems due to impacts on channel morphology, hydrology, and water quality. Urbanization, the second leading cause of stream impairment, increases the amount of impervious surface cover, thus reducing infiltration and increasing surface runoff of precipitation, which ultimately affects stream hydrologic process and aquatic biodiversity. The main objective of this study was to assess the overall health of Miller Run, a small tributary of the Bull Run and Susquehanna River watersheds, through an integrative hydrologic and water quality approach in order to determine the degree of Bucknell University’s impact on the stream. Hydrologic conditions, including stage and discharge, and water quality conditions, including total suspended solids, ion, nutrient, and dissolved metal concentrations, specific conductivity, pH, and temperature, were measured and evaluated at two sampling sites (upstream and downstream of Bucknell’s main campus) during various rain events from September 2007 to March 2008. The primary focus of the stream analysis was based on one main rain event on 26 February 2008. The results provided evidence that Miller Run is impacted by Bucknell’s campus. From a hydrologic perspective, the stream’s hydrograph showed the exact opposite pattern of what would be expected from a ‘normal’ stream. Miller run had a flashier downstream hydrograph and a broader upstream hydrograph, which was more than likely due to the increased amount of impervious surface cover throughout the downstream half of the watershed. From a water quality perspective, sediment loads increased at a faster rate and were significantly higher downstream compared to upstream. These elevated sediment concentrations were probably the combined result of sediment runoff from upstream and downstream construction sites that were being developed over the course of the study. Sodium, chloride, and potassium concentrations, in addition to specific conductivity, also significantly increased downstream of Bucknell’s campus due to the runoff of road salts. Calcium and magnesium concentrations did not appear to be impacted by urbanization, although they did demonstrate a significant dilution effect downstream. The downstream site was not directly affected by elevated nitrate concentrations; however, soluble reactive phosphorus concentrations tended to increase downstream and ammonium concentrations significantly peaked partway through the rain event downstream. These patterns suggest that Miller Run may be impacted by nutrient runoff from the golf course, athletic fields, and/or fertilizers applications on the main campus. Dissolved manganese and iron concentrations also appeared to slightly increase downstream, demonstrating the affect of urban runoff from roads and parking lots. pH and temperature both decreased farther downstream, but neither showed a significant impact of urbanization. More studies are necessary to determine how Miller Run responds to changes in season, climate, precipitation intensity, and land-use. This study represents the base-line analysis of Miller Run’s current hydrologic and water quality conditions; based on these initial findings, Bucknell should strongly consider modifications to improve storm water management practices and to reduce the campus’s overall impact on the stream in order to enhance and preserve the integrity of its natural water resources.
Resumo:
This study’s objective was to answer three research questions related to students’ knowledge and attitudes about water quality and availability issues. It is important to understand what knowledge students have about environmental problems such as these, because today’s students will become the problem solvers of the future. If environmental problems, such as those related to water quality, are ever going to be solved, students must be environmentally literate. Several methods of data collection were used. Surveys were given to both Bolivian and Jackson High School students in order to comparison their initial knowledge and attitudes about water quality issues. To study the effects of instruction, a unit of instruction about water quality issues was then taught to the Jackson High School students to see what impact it would have on their knowledge. In addition, the learning of two different groups of Jackson High School students was compared—one group of general education students and a second group of students that were learning in an inclusion classroom and included special education students and struggling learners form the general education population. Student and teacher journals, a unit test, and postsurvey responses were included in the data set. Results suggested that when comparing Bolivian students and Jackson High School students, Jackson High School students were more knowledgeable concerning clean water infrastructure and its importance, despite the fact that these issues were less relevant to their lives than for their Bolivian counterparts. Although overall, the data suggested that all the Jackson High students showed evidence that the instruction impacted their knowledge, the advanced Biology students appeared to show stronger gains than their peers in an inclusion classroom.
Resumo:
Ensuring water is safe at source and point-of-use is important in areas of the world where drinking water is collected from communal supplies. This report describes a study in rural Mali to determine the appropriateness of assumptions common among development organizations that drinking water will remain safe at point-of-use if collected from a safe (improved) source. Water was collected from ten sources (borehole wells with hand pumps, and hand-dug wells) and forty-five households using water from each source type. Water quality was evaluated seasonally (quarterly) for levels of total coliform, E.coli, and turbidity. Microbial testing was done using the 3M Petrifilm™ method. Turbidity testing was done using a turbidity tube. Microbial testing results were analyzed using statistical tests including Kruskal-Wallis, Mann Whitney, and analysis of variance. Results show that water from hand pumps did not contain total coliform or E.coli and had turbidity under 5 NTUs, whereas water from dug wells had high levels of bacteria and turbidity. However water at point-of-use (household) from hand pumps showed microbial contamination - at times being indistinguishable from households using dug wells - indicating a decline in water quality from source to point-of-use. Chemical treatment at point-of-use is suggested as an appropriate solution to eliminating any post-source contamination. Additionally, it is recommended that future work be done to modify existing water development strategies to consider water quality at point-of-use.
Resumo:
The Williston basin has been producing oil and gas since the 1950s, but production has increased recently due to use of hydraulic fracturing and horizontal drilling technologies to extract oil and gas from the Bakken and Three Forks Formations. As concern about effects of energy production on surface-water and groundwater quality increases, the characterization of current water-quality conditions is highly important to the scientific community, resource managers, industry, and general public.
Resumo:
This study aimed to identify the microbial contamination of water from dental chair units (DCUs) using the prevalence of Pseudomonas aeruginosa, Legionella species and heterotrophic bacteria as a marker of pollution in water in the area of St. Gallen, Switzerland. Water (250 ml) from 76 DCUs was collected twice (early on a morning before using all the instruments and after using the DCUs for at least two hours) either from the high-speed handpiece tube, the 3 in 1 syringe or the micromotor for water quality testing. An increased bacterial count (>300 CFU/ml) was found in 46 (61%) samples taken before use of the DCU, but only in 29 (38%) samples taken two hours after use. Pseudomonas aeruginosa was found in both water samples in 6/76 (8%) of the DCUs. Legionella were found in both samples in 15 (20%) of the DCUs tested. Legionella anisa was identified in seven samples and Legionella pneumophila was found in eight. DCUs which were less than five years old were contaminated less often than older units (25% und 77%, p<0.001). This difference remained significant (0=0.0004) when adjusted for manufacturer and sampling location in a multivariable logistic regression. A large proportion of the DCUs tested did not comply with the Swiss drinking water standards nor with the recommendations of the American Centers for Disease Control and Prevention (CDC).
Resumo:
Access to sufficient quantities of safe drinking water is a human right. Moreover, access to clean water is of public health relevance, particularly in semi-arid and Sahelian cities due to the risks of water contamination and transmission of water-borne diseases. We conducted a study in Nouakchott, the capital of Mauritania, to deepen the understanding of diarrhoeal incidence in space and time. We used an integrated geographical approach, combining socio-environmental, microbiological and epidemiological data from various sources, including spatially explicit surveys, laboratory analysis of water samples and reported diarrhoeal episodes. A geospatial technique was applied to determine the environmental and microbiological risk factors that govern diarrhoeal transmission. Statistical and cartographic analyses revealed concentration of unimproved sources of drinking water in the most densely populated areas of the city, coupled with a daily water allocation below the recommended standard of 20 l per person. Bacteriological analysis indicated that 93% of the non-piped water sources supplied at water points were contaminated with 10-80 coliform bacteria per 100 ml. Diarrhoea was the second most important disease reported at health centres, accounting for 12.8% of health care service consultations on average. Diarrhoeal episodes were concentrated in municipalities with the largest number of contaminated water sources. Environmental factors (e.g. lack of improved water sources) and bacteriological aspects (e.g. water contamination with coliform bacteria) are the main drivers explaining the spatio-temporal distribution of diarrhoea. We conclude that integrating environmental, microbiological and epidemiological variables with statistical regression models facilitates risk profiling of diarrhoeal diseases. Modes of water supply and water contamination were the main drivers of diarrhoea in this semi-arid urban context of Nouakchott, and hence require a strategy to improve water quality at the various levels of the supply chain.
Resumo:
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.