930 resultados para Wastewater Systems Effluent Regulations
Resumo:
Biochemical processes by chemoautotrophs such as nitrifiers and sulfide and iron oxidizers are used extensively in wastewater treatment. The research described in this dissertation involved the study of two selected biological processes utilized in wastewater treatment mediated by chemoautotrophic bacteria: nitrification (biological removal of ammonia and nitrogen) and hydrogen sulfide (H2S) removal from odorous air using biofiltration. A municipal wastewater treatment plant (WWTP) receiving industrial dyeing discharge containing the azo dye, acid black 1 (AB1) failed to meet discharge limits, especially during the winter. Dyeing discharge mixed with domestic sewage was fed to sequencing batch reactors at 22oC and 7oC. Complete nitrification failure occurred at 7oC with more rapid nitrification failure as the dye concentration increased; slight nitrification inhibition occurred at 22oC. Dye-bearing wastewater reduced chemical oxygen demand (COD) removal at 7oC and 22oC, increased i effluent total suspended solids (TSS) at 7oC, and reduced activated sludge quality at 7oC. Decreasing AB1 loading resulted in partial nitrification recovery. Eliminating the dye-bearing discharge to the full-scale WWTP led to improved performance bringing the WWTP into regulatory compliance. BiofilterTM, a dynamic model describing the biofiltration processes for hydrogen sulfide removal from odorous air emissions, was calibrated and validated using pilot- and full-scale biofilter data. In addition, the model predicted the trend of the measured data under field conditions of changing input concentration and low effluent concentrations. The model demonstrated that increasing gas residence time and temperature and decreasing influent concentration decreases effluent concentration. Model simulations also showed that longer residence times are required to treat loading spikes. BiofilterTM was also used in the preliminary design of a full-scale biofilter for the removal of H2S from odorous air. Model simulations illustrated that plots of effluent concentration as a function of residence time or bed area were useful to characterize and design biofilters. Also, decreasing temperature significantly increased the effluent concentration. Model simulations showed that at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter.
Resumo:
The capacity of dry protonated calcium alginate beads to sorb metals from an industrial effluent was studied and compared with a commercial ion-exchange resin (Lewatit TP 207). Both sorbents decreased zinc, nickel, iron and calcium concentrations in the effluent, and released sodium during treatment. Alginate beads removed lower amounts of heavy metals than the resin, but exhibited faster uptake kinetics. Zinc desorption from the sorbents was achieved in 30 minutes using 0.1 M HCl or 0.1 M H(2)SO(4). Desorption ratios with these acids varied between 90 and 100% for alginate, and 98 to 100% for the ion-exchange resin. Reusability tests with HCl showed that alginate beads can stand acid desorption and recover binding capacity. Overall, the comparison of dry protonated alginate beads with the resin supports the potential of the biosorbent for the treatment of industrial effluents.
Resumo:
Comunicação selecionada e Artigo publicado no Livro de Actas do Congresso
Resumo:
The literature clearly links the quality and capacity of a country’s infrastructure to its economic growth and competitiveness. This thesis analyses the historic national and spatial distribution of investment by the Irish state in its physical networks (water, wastewater and roads) across the 34 local authorities and examines how Ireland is perceived internationally relative to its economic counterparts. An appraisal of the current status and shortcomings of Ireland’s infrastructure is undertaken using key stakeholders from foreign direct investment companies and national policymakers to identify Ireland's infrastructural gaps, along with current challenges in how the country is delivering infrastructure. The output of these interviews identified many issues with how infrastructure decision-making is currently undertaken. This led to an evaluation of how other countries are informing decision-making, and thus this thesis presents a framework of how and why Ireland should embrace a Systems of Systems (SoS) methodology approach to infrastructure decision-making going forward. In undertaking this study a number of other infrastructure challenges were identified: significant political interference in infrastructure decision-making and delivery the need for a national agency to remove the existing ‘silo’ type of mentality to infrastructure delivery how tax incentives can interfere with the market; and their significance. The two key infrastructure gaps identified during the interview process were: the need for government intervention in the rollout of sufficient communication capacity and at a competitive cost outside of Dublin; and the urgent need to address water quality and capacity with approximately 25% of the population currently being served by water of unacceptable quality. Despite considerable investment in its national infrastructure, Ireland’s infrastructure performance continues to trail behind its economic partners in the Eurozone and OECD. Ireland is projected to have the highest growth rate in the euro zone region in 2015 and 2016, albeit that it required a bailout in 2010, and, at the time of writing, is beginning to invest in its infrastructure networks again. This thesis proposes the development and implementation of a SoS approach for infrastructure decision-making which would be based on: existing spatial and capacity data of each of the constituent infrastructure networks; and scenario computation and analysis of alternative drivers eg. Demographic change, economic variability and demand/capacity constraints. The output from such an analysis would provide valuable evidence upon which policy makers and decision makers alike could rely, which has been lacking in historic investment decisions.
Resumo:
BACKGROUND: Conceptualization of quality of care - in terms of what individuals, groups and organizations include in their meaning of quality, is an unexplored research area. It is important to understand how quality is conceptualised as a means to successfully implement improvement efforts and bridge potential disconnect in language about quality between system levels, professions, and clinical services. The aim is therefore to explore and compare conceptualization of quality among national bodies (macro level), senior hospital managers (meso level), and professional groups within clinical micro systems (micro level) in a cross-national study. METHODS: This cross-national multi-level case study combines analysis of national policy documents and regulations at the macro level with semi-structured interviews (383) and non-participant observation (803 hours) of key meetings and shadowing of staff at the meso and micro levels in ten purposively sampled European hospitals (England, the Netherlands, Portugal, Sweden, and Norway). Fieldwork at the meso and micro levels was undertaken over a 12-month period (2011-2012) and different types of micro systems were included (maternity, oncology, orthopaedics, elderly care, intensive care, and geriatrics). RESULTS: The three quality dimensions clinical effectiveness, patient safety, and patient experience were incorporated in macro level policies in all countries. Senior hospital managers adopted a similar conceptualization, but also included efficiency and costs in their conceptualization of quality. 'Quality' in the forms of measuring indicators and performance management were dominant among senior hospital managers (with clinical and non-clinical background). The differential emphasis on the three quality dimensions was strongly linked to professional roles, personal ideas, and beliefs at the micro level. Clinical effectiveness was dominant among physicians (evidence-based approach), while patient experience was dominant among nurses (patient-centered care, enough time to talk with patients). Conceptualization varied between micro systems depending on the type of services provided. CONCLUSION: The quality conceptualization differed across system levels (macro-meso-micro), among professional groups (nurses, doctors, managers), and between the studied micro systems in our ten sampled European hospitals. This entails a managerial alignment challenge translating macro level quality definitions into different local contexts.
Resumo:
This paper presents a study related with measuring of radio frequency emissions. The purpose is to determine the level of interference generated by wireless power transfer equipment in a specific frequency range, and to compare those levels to the existing standards. The technology of wireless power transfer, especially for electric vehicles batteries charging, is rapidly developing in the recent years. An increasing use of this technology in industrial and consumer electronic products has raised concerns about the possible unfavorable health-effects onto the human being. Another concern is raised from the high intensity fields produced by wireless power transfer systems which will generate highly undesired influence on other electrical and electronic equipment. As a protection against the potential health effects, the governments imposed limits on the occupational and general public exposure to the radio frequencies. These limitations are set out in national and international safety guidelines, standards and regulations. The measurement and evaluation of the human exposure to electromagnetic fields are essential to guarantee occupational and general public safety.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Revolutionary Leadership, Education Systems and New Times: More of the Same or Time For Real Change?