962 resultados para WESTERN-BLOT PATTERNS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The antiangiogenic effect of an antisense oligodeoxynucleotide (ODN) targeting insulin receptor substrate (IRS)-1 was evaluated on rat corneal neovascularization. METHODS: Eyes with neovessels were treated with subconjunctival injections of IRS-1 antisense oligonucleotide (ASODN), IRS-1 sense ODN (SODN), or PBS. At 8 and 24 hours after the first subconjunctival injection, the expression of IRS-1, VEGF, and IL-1beta mRNA was evaluated. IRS-1 protein levels were also measured at 8 hours by Western blot analysis (n = 4/group). On day 10, corneal neovascularization was quantified in flatmount corneas of rats treated daily from days 4 to 9. RESULTS: On day 10, new vessels covered 95.5% +/- 4% of the corneal area in PBS-treated eyes, 92% +/- 7% in SODN-treated eyes and 59% +/- 20% in ASODN-treated eyes (P < 0.001). In the ASODN-treated group, the expression and synthesis of IRS-1 were significantly downregulated when compared with the control groups. ASODN did not significantly affect the expression of VEGF but significantly decreased the expression of IL-1beta at 24 hours (P = 0.04). CONCLUSIONS: Subconjunctival injections of IRS-1 antisense ODN significantly inhibit rat corneal neovascularization. This effect may be mediated by a downregulation of IL-1beta. IRS-1 proteins may be interesting targets for the regulation of angiogenesis mediated by insulin, hypoxia, or inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and objectives Interleukin 18 (IL-18) is a pleiotropic cytokine involved in rheumatoid arthritis (RA) pathogenesis. This study was carried out to evaluate the effi cacy of IL-18 binding protein (IL-18BP) gene therapy in the rat adjuvant- induced arthritis (AIA) model and to decipher the mechanisms by which IL-18BP delivery lessens bone destruction.Materials and methods Arthritis was induced in female Lewis rat by Mycobacterium butyricum and the mRNA expression of IL-18 and IL-18BP was determined in the joints. In a preventive study, rats were divided into an adenovirus producing IL-18BP-Fc (AdmIL-18BP-Fc) group (n=8) and an adenovirus producing green fl uorescent protein (AdGFP) group (n=7). On day 8 after AIA induction, adenoviruses were injected. Clinical parameters were assessed. At day 18, during maximal arthritis, the rats were euthanized, ankles were collected and x-rays were performed. mRNA and protein were extracted from joints for analysis by quantitative reverse transcriptase-PCR, multiplex, Western blot and zymography.Results The authors observed a decrease in the (IL-18BP/ IL-18) ratio from day 7 to 45. Administration of AdmIL-18BPd-Fc decreased clinical parameters and prevented bone and joint destruction compared to AdGFP administration. IL-18BP delivery reduced the (receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG)) ratio by 70%, the matrix metalloproteinase 9 (MMP9) level by 33% and the tartrate-resistant acid phosphatase (TRAP) level by 44% in the joint homogenates from AdmIL-18BPd-Fc compared to AdGFP treated rats.Conclusions In rat AIA, a decrease in the (IL-18BP/IL-18) ratio was observed. IL-18BP delivery prevented joint and bone destruction by downregulating MMP9, (RANKL/OPG) and TRAP, suggesting a potential benefi t of a similar therapy in RA.Abstract topics Towards novel therapeutic strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polychlorinated biphenyls (PCBs) are a group of halogenated aromatic hydrocarbons, synthetic chemicals which do not occur naturally in the environment. PCBs are considered potential endocrine disruptors. They are estrogen-like and anti-androgenic chemicals in the environment contain potentially hazardous effects on male reproductive axis resulting in infertility and other hormonal dependent reproductive functions. These toxic substance cause alteration of the endocrine systems, mimic natural hormones and inhibit the action of hormones. The aim of this study is to examine the effect of Polychlorinated biphenyls (PCBs) on testicular development of male reproductive system in mice. The male mice were randomly assigned to five groups with each group comprising twenty-one members. In those mice were administered 0 μg/kg (control group) and 0.5, 5, 50, 500 μg/kg Aroclor 1254 (treated group) by gavages three time per week. Treatment was carried out for 50 days after which the mouse was sacrificed and the body weight, testicular weight; epedidymis weight, sperm mortality, sperm count and sperm abnormality were taken. However, there was no significant difference in testicular/body weight and epididymis/body weight ratio in treated group compared with the control group. According to the analysis of sperm quality, Aroclor 1254 treated group demonstrated significant increased in sperm mortality in 500 μg/kg; decreased the sperm count in 0.5 μg/kg, 5 μg/kg, 50 μg/kg and 500 μg/kg; and significantly elevate the sperm abnormality in 50 μg/kg and 500 μg/kg compared to the control in a dose-dependent manner. The sex hormone levels in the testes were detected by radio-immunoassay (RIA) method. The levels of testosterone and 17β-estradiol did not reveal significant alteration (p< 0.05) in PCBs treated groups compared to the control in a dose-dependent manner. The testis were obtained and subjected to routine histopathology following exposure to PCBs in supplement diet. The diameter of the seminiferous tubule and the number of Sertoli cells in the treated group increased significantly (p< 0.05) in comparison to the control group. For the spermatogenic cell, the number of germ cell in high concentration decreased significantly (p< 0.05). However, spermatogonia cells in PCB treated group showed non-significant difference (p< 0.05) compared to the control. vii Western blot analysis was used to determine the level of protein between the control and treated group. The level of Proliferating cell nuclear antigen (PCNA) was determined and the results have shown no significant alteration between the treated groups and the control. the level of sex hormone receptor (ER α/β); Androgen receptor (AR) were identified in the testes to detect the proliferative effect induced by PCBs. Statistical analyses of AR, ER α and ER β did not reveal significant difference between the control and the treated groups. In the present study, we continue to investigate adverse effect of Aroclor 1254 and their mechanism on spermatogenesis. The result of Sperm quality and histopathology showed that Aroclor 1254 at low concentration induce inhibitory effect on testicular function of male mouse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND:: Mechanical stretch has been shown to induce vascular remodeling and increase vessel density, but the pathophysiologic mechanisms and the morphologic changes induced by tensile forces to dermal vessels are poorly understood. METHODS:: A custom computer-controlled stretch device was designed and applied to the backs of C57BL/6 mice (n = 38). Dermal and vascular remodeling was studied over a 7-day period. Corrosion casting and three-dimensional scanning electron microscopy and CD31 staining were performed to analyze microvessel morphology. Hypoxia was assessed by immunohistochemistry. Western blot analysis of vascular endothelial growth factor (VEGF) and mRNA expression of VEGF receptors was performed. RESULTS:: Skin stretching was associated with increased angiogenesis as demonstrated by CD31 staining and vessel corrosion casting where intervascular distance and vessel diameter were decreased (p < 0.01). Immediately after stretching, VEGF dimers were increased. Messenger RNA expression of VEGF receptor 1, VEGF receptor 2, neuropilin 1, and neuropilin 2 was increased starting as early as 2 hours after stretching. Highly proliferating epidermal cells induced epidermal hypoxia starting at day 3 (p < 0.01). CONCLUSIONS:: Identification of significant hypoxic cells occurred after identification of neovessels, suggesting an alternative mechanism. Increased expression of angiogenic receptors and stabilization of VEGF dimers may be involved in a mechanotransductive, prehypoxic induction of neovascularization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, 23% (1.3 million) of the total of new cases and the second leading cause of cancer death in women exceeded only by lung cancer. Natural medicines have been proven to be a central source of narrative agents with a pharmaceutical potential. Costunolide is sesquiterpene lactones consisting of diverse plant chemicals that exhibit anti cancer action through cytotoxic effects on various cancer cells. The objectives of present study were to explore the effects of natural compounds on the proliferation of MCF-7 cells and to determine the role of ROS in natural compounds-induced apoptosis in breast cancer cells with a therapeutic potential. Results showed that costunolide screened, possess potent anticancer properties against breast cancer MCF-7 cells, Costunolide was observed as strong anti-proliferative agent with IC50 = 50µM. The anti-proliferative effect of costunolide on MCF cells was confirmed by live/dead assay using fluorescent probes calcein AV/PI. The results demonstrated that treatment of cells with costunolide decreased the viability of MCF-7 cells in a dose-dependent manner. To determine the costunolide-induced apoptosis, flow cytometric analysis was carried out. The results showed that costunolide induced apoptosis in a dose-dependent manner in breast cancer MCF-7cells. ROS are well known mediators of intracellular signaling of cascades. The excessive generation of ROS can induce oxidative stress, loss of cell functioning, and apoptosis. In the present study, we assumed that costunolide might arouse ROS level, which could be involved in induction of apoptosis. Therefore, the intracellular ROS level was measured using the ROS-detecting fluorescence dye 2, 7-dichlorofluorescein diacetate (DCF-DA). Interestingly these effects were significantly abrogated when the cells were pretreated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Costunolide induces apoptosis through extrinsic pathway in MCF-7 breast cancer cells, In order to examine whether costunolide suppresses cell growth inducing apoptotic cell death, we analyzed DNA contents and apoptosis-related proteins expression level by flow cytometry and western blot, respectively in MCF-7 breast cancer cells we investigated whether costunolide activates extrinsic apoptotic pathway. We examined the expression levels of death receptor signaling-related proteins, caspase-3, and PARP. The results showed that procaspase-3 was cleaved to yield 17 and 20kDa fragments and activation of PARP in treated cells with 25 and 50μM of costunolide. Costunolide induce apoptosis through intrinsic mitochondria pathway in MCF-7 breast cancer Cells. We examined the expression levels of mitochondrial apoptotic pathway related proteins such as anti-apoptotic protein, B-cell lymphoma protein-2 (Bcl2), and pro-apoptotic protein Bax. Costunolide involved in the down regulation of Bcl-2 and up regulation of Bax. These results suggest that costunolide may have beneficial effects for the reduction of breast cancer growth, and new therapeutic strategy for the treatment of human cancers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The M-band is an important cytoskeletal structure in the centre of the sarcomere, believed to cross-link the thick filament lattice. Its main components are three closely related modular proteins from the myomesin gene family: Myomesin, M-protein and myomesin-3. Each muscle is characterized by its unique M-band protein composition, depending on the contractile parameters of a particular fiber. To investigate the role of the M-band in one of the most relevant and clinically increasing cardiac diseases, we analyzed the expression of myomesin proteins in dilated cardiomyopathy (DCM).Methods: In a previous study we analyzed mouse models suffering from DCM, demonstrating that the embryonic heart specific EH-myomesin splicing isoform was up-regulated directly corresponding to the degree of cardiac dysfunction and ventricular dilation. Based on this study, human ventricular and atrial samples (n=32) were obtained during heart surgery after informed consent and approval by an institutional review board. Patients were aged 30-70 years and suffered from dilated cardiomyopathy (DCM;n=13), Hypertrophic Cardiomyopathy (HCM;n=10) or served as controls (n=9). Patients suffering from DCM or HCM were in endstage heart-failure (NYHA III-IV) and either underwent heart transplantation or Left Ventricular Assist Device (LVAD) implantation. Heart samples from patients who underwent valve surgery or congenital heart surgery served as controls. Heart Samples were analyzed using RT-PCR, Western blot, and immunofluorescence.Results: By investigating the expression pattern of myomesins, we found that DCM is accompanied by specific M-band alterations, which were more pronounced in ventricular samples compared to the atrium. Changes in the amounts of different myomesins during DCM occurred in a cell-specific manner, leading to a higher heterogeneity of the cytoskeleton in cardiomyocytes through the myocardial wall with some cells switching completely to an embryonic phenotype.Conclusions: Here we present that the embryonic heart specific EH-myomesin isoform is up-regulated in human DCM. The alterations of the M-band protein composition might be part of a general adaptation of the sarcomeric cytoskeleton to unfavorable working conditions in the failing heart and may modify the mechanical properties of the cardiomyocytes. We suggest that the upregulation of EH-myomesin might play a pivotal role in DCM and might support classical imagingas a novel sarcomeric marker for this disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Targeting the mTOR signaling pathway with rapamycin in cancer therapy has been less successful than expected due in part to the removal of a negative feedback loop resulting in the over-activation of the PI3K/Akt signaling pathway. As the c-Jun N-terminal kinase (JNK) signaling pathway has been found to be a functional target of PI3K, we investigate the role of JNK in the anticancer efficacy of rapamycin.Materials and Methods. The colon cancer cell line LS174T was treated with rapamycin and JNK phosphorylation was analyzed by Western Blot. Overexpression of a constitutively negative mutant of JNK in LS174T cells or treatment of LS174T cells with the JNK inhibitor SP600125 were used to determine the role of JNK in rapamycin-mediated tumor growth inhibition.Results. Treatment of LS174T cells with rapamycin resulted in the phosphorylation of JNK as observed by Western Blot. The expression of a negative mutant of JNK in LS174T cells or treatment of LS174T cells with SP600125 enhanced the antiproliferative effects of rapamycin. In addition, in vivo, the antitumor activity of rapamycin was potentiated on LS174T tumor xenografts that expressed the dominant negative mutant of JNK.Conclusions. Taken together, these results show that rapamycin-induced JNK phosphorylation and activation reduces the antitumor efficacy of rapamycin in LS174T cells. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Purpose: XG-102, a TAT-coupled dextrogyre peptide inhibiting the c-Jun N-terminal kinase, was shown efficient in the treatment of experimental uveitis. Preclinical studies are now performed to determine optimal XG-102 dose and route of administration in endotoxin-induced uveitis (EIU) in rats with the purpose of clinical study design. METHODS: EIU was induced in Lewis rats by lipopolysaccharides (LPS) injection. XG-102 was administered at the time of LPS challenge by intravenous (IV; 3.2, 35 or 355 μg/injection), intravitreal (IVT; 0.08, 0.2 or 2.2 μg/eye), or subconjunctival (SCJ; 0.2, 1.8 or 22 μg/eye) routes. Controls received either the vehicle (saline) or dexamethasone phosphate injections. Efficacy was assessed by clinical scoring, infiltrating cells count, and expression of inflammatory mediators [inducible nitric oxide synthase (iNOS), cytokine-induced neutrophil chemoattractant-1 (CINC-1)]. The effect of XG-102 on phosphorylation of c-Jun was evaluated by Western blot. RESULTS: XG-102 demonstrated a dose-dependent anti-inflammatory effect in EIU after IV and SCJ administrations. Respective doses of 35 and 1.8 μg were efficient as compared with the vehicle-injected controls, but only the highest doses, respectively 355 and 22 μg, were as efficient as dexamethasone phosphate. After IVT injections, the anti-inflammatory effect of XG-102 was clinically evaluated similar to the corticoid's effect with all the tested doses. Regardless of the administration route, the lowest efficient doses of XG-102 significantly decreased the ration of phospho c-Jun/total c-Jun, reduced cells infiltration in the treated eyes, and significantly downregulated iNOS and CINC-1 expression in the retina. CONCLUSION: These results confirm that XG-102 peptide has potential for treating intraocular inflammation. SCJ injection appears as a good compromise to provide a therapeutic effect while limiting side effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose/Objective(s): Current standard treatment of glioblastoma is radiotherapy (RT) concomitant with temozolomide (TMZ), an alkylating agent. O6-methylguanine-DNA methyltransferase (MGMT) expression is a major mechanism of resistance to Proceedings of the alkylating agent chemotherapy, and MGMT gene promoter methylation (present in 30-45 % of tumors) has been shown to be predictive for tumor response to TMZ therapy. MGMT, an exhaustible repair protein can be depleted by specific inhibitors such as O6- benzylguanine or the non-toxic O6-(4-bromothenyl)guanine (PaTrin-2). Here we have studied the efficacy of the combination of TMZ, RT, and PaTrin-2 to improve the treatment outcome in glioblastoma expressing MGMT. Materials/Methods: 3 glioblastoma lines were chosen: LN18 and T98G expressing MGMT and U251 lacking MGMT expression. A shRNA approach was used to selectively and permanently knockdown level of MGMT in LN18 line. Cells were treated with 10 mM PaTrin-2. After 2 h, various concentrations of TMZ were added, cells were incubated for 24 h, and clonogenic assays were performed. After the same PaTrin-2 pretreatment and 100 mM TMZ exposure, cells were plated 4 h before irradiation with increasing RT doses of up to 6 Gy. Clonogenic survival was assessed after 14 days. Results: Western blot analysis confirmed that reduction of MGMT expression was achieved in LN18A1 expressing MGMT-targeting shRNA. The shRNA non-targeting control sequence did not influenceMGMTprotein level (LN18NT). PaTrin-2 showed no toxicity at 10 mMon the 5 cell lines. TMZ induced up to 70 and 97%of cell death on LN18A1 and U251, respectively, but was not toxic up to 50 mMfor T98G, LN18, and LN18NT. Up to 53%increased TMZ toxicity was observed on the 5 cell lines when treated with the 2 drugs. Irradiation of the 5 lines treated or not with PaTrin-2 showed no survival difference at any irradiation dose. When LN18A1 and U251 cells were irradiated post TMZ treatment, an up to 2.5 and 139.4 fold increase in toxicity, respectively, was observed compared to un-pretreated controls. By contrast, TMZ pretreatment did not increase irradiation toxicity on T98G, LN18, and LN18NT. When cells were incubated with PaTrin-2 and TMZ before the irradiation, up to 3.7, 3.9, 5.8, 6.6 and 348.5 fold increase in toxicity was observed compared to controls on LN18, LN18NT, LN18A1, T98G and U251, respectively. Conclusions: We present here results of TMZ and PaTrin-2 combination ± RT on glioblastoma lines. U251 and LN18A1 cells were much more sensitive to TMZ than LN18, LN18NT, and T98G. PaTrin-2 enhanced the toxicity of TMZ on the MGMT expressing glioblastoma lines. RT further increased TMZ and PaTrin-2 efficacy. These results are encouraging for the treatment of patients with glioblastoma expressing MGMT who have the worst prognosis and respond poorly to RT combined with TMZ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, using HIV-1-derived lentivectors, we obtained efficient transduction of primary human B lymphocytes cocultured with murine EL-4 B5 thymoma cells, but not of isolated B cells activated by CD40 ligation. Coculture with a cell line is problematic for gene therapy applications or study of gene functions. We have now found that transduction of B cells in a system using CpG DNA was comparable to that in the EL-4 B5 system. A monocistronic vector with a CMV promoter gave 32 +/- 4.7% green fluorescent protein (GFP)+ cells. A bicistronic vector, encoding IL-4 and GFP in the first and second cistrons, respectively, gave 14.2 +/- 2.1% GFP+ cells and IL-4 secretion of 1.3 +/- 0.2 ng/10(5) B cells/24 h. This was similar to results obtained in CD34+ cells using the elongation factor-1alpha promoter. Activated memory and naive B cells were transducible. After transduction with a bicistronic vector encoding a viral FLIP molecule, vFLIP was detectable by FACS or Western blot in GFP+, but not in GFP-, B cells, and 57% of sorted GFP+ B cells were protected against Fas ligand-induced cell death. This system should be useful for gene function research in primary B cells and development of gene therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A serological survey of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections was carried out on a random sex- and age-stratified sample of 1006 individuals aged 25-64 years in the Seychelles islands. Anti-HBc and anti-HCV antibodies were detected using commercially available enzyme-linked immunosorbent assays (ELISA), followed by a Western blot assay in the case of a positive result for anti-HCV. The age-adjusted seroprevalence of anti-HBc antibodies was 8.0% (95% CI: 6.5-9.9%) and the percentage prevalence among males/females increased from 7.0/3.1 to 19.1/13.4 in the age groups 25-34 to 55-64 years, respectively. Two men and three women were positive for anti-HCV antibodies, with an age-adjusted seroprevalence of 0.34% (95% CI: 0.1-0.8%). Two out of these five subjects who were positive for anti-HCV also had anti-HBc antibodies. The seroprevalence of anti-HBc was significantly higher in unskilled workers, persons with low education, and heavy drinkers. The age-specific seroprevalence of anti-HBc in this population-based survey, which was conducted in 1994, was approximately three times lower than in a previous patient-based survey carried out in 1979. Although there are methodological differences between the two surveys, it is likely that the substantial decrease in anti-HBc prevalence during the last 15 years may be due to significant socioeconomic development and the systematic screening of blood donors since 1981. Because hepatitis C virus infections are serious and the cost of treatment is high, the fact that the prevalence of anti-HCV antibodies is at present low should not be an argument for not screening blood donors for anti-HCV and eliminating those who are positive.