984 resultados para WASTE DISPOSAL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Brazil, the large quantities of solid waste produced are out of step with public policies, technological developments, and government budgets for the division. In small municipalities, the common lack of technological knowledge and financial conditions for suitable waste disposal has resulted in a large number of illegal dumps. Therefore, small sanitary landfill facilities are working with simplified operations focusing on cost reduction and meeting the economic and technological standards of the city without endangering the environment or public health. Currently, this activity is regulated at a federal level although there is some uncertainty regarding the risk of soil and aquifer contamination as theses facilities do not employ liners. Thus, this work evaluates a small landfill to identify changes in soil and groundwater using geotechnical parameters, monitoring wells, and geophysical tests performed by electrical profiling. It is verified that based on current conditions, no contaminants have migrated via underground water aquifers, and overall no significant changes have occurred in the soil. It is concluded that, despite its simplicity, the method investigated is a viable alternative for the final disposal of municipal solid waste from small cities, especially in developing countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing aversion to technological risks of the society requires the development of inherently safer and environmentally friendlier processes, besides assuring the economic competitiveness of the industrial activities. The different forms of impact (e.g. environmental, economic and societal) are frequently characterized by conflicting reduction strategies and must be holistically taken into account in order to identify the optimal solutions in process design. Though the literature reports an extensive discussion of strategies and specific principles, quantitative assessment tools are required to identify the marginal improvements in alternative design options, to allow the trade-off among contradictory aspects and to prevent the “risk shift”. In the present work a set of integrated quantitative tools for design assessment (i.e. design support system) was developed. The tools were specifically dedicated to the implementation of sustainability and inherent safety in process and plant design activities, with respect to chemical and industrial processes in which substances dangerous for humans and environment are used or stored. The tools were mainly devoted to the application in the stages of “conceptual” and “basic design”, when the project is still open to changes (due to the large number of degrees of freedom) which may comprise of strategies to improve sustainability and inherent safety. The set of developed tools includes different phases of the design activities, all through the lifecycle of a project (inventories, process flow diagrams, preliminary plant lay-out plans). The development of such tools gives a substantial contribution to fill the present gap in the availability of sound supports for implementing safety and sustainability in early phases of process design. The proposed decision support system was based on the development of a set of leading key performance indicators (KPIs), which ensure the assessment of economic, societal and environmental impacts of a process (i.e. sustainability profile). The KPIs were based on impact models (also complex), but are easy and swift in the practical application. Their full evaluation is possible also starting from the limited data available during early process design. Innovative reference criteria were developed to compare and aggregate the KPIs on the basis of the actual sitespecific impact burden and the sustainability policy. Particular attention was devoted to the development of reliable criteria and tools for the assessment of inherent safety in different stages of the project lifecycle. The assessment follows an innovative approach in the analysis of inherent safety, based on both the calculation of the expected consequences of potential accidents and the evaluation of the hazards related to equipment. The methodology overrides several problems present in the previous methods proposed for quantitative inherent safety assessment (use of arbitrary indexes, subjective judgement, build-in assumptions, etc.). A specific procedure was defined for the assessment of the hazards related to the formations of undesired substances in chemical systems undergoing “out of control” conditions. In the assessment of layout plans, “ad hoc” tools were developed to account for the hazard of domino escalations and the safety economics. The effectiveness and value of the tools were demonstrated by the application to a large number of case studies concerning different kinds of design activities (choice of materials, design of the process, of the plant, of the layout) and different types of processes/plants (chemical industry, storage facilities, waste disposal). An experimental survey (analysis of the thermal stability of isomers of nitrobenzaldehyde) provided the input data necessary to demonstrate the method for inherent safety assessment of materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plutonium represents the major contribution to the radiotoxicity of spent nuclear fuel over storage times of up to several hundred thousand years. The speciation of plutonium in aquifer systems is important in order to assess the risks of high-level nuclear waste disposal and to acquire a deep knowledge of the mobilization and immobilization behavior of plutonium. In aqueous solutions, plutonium can coexist in four oxidation states and each one of them has different chemical and physical behavior. Tetravalent plutonium is the most abundant under natural conditions. Therefore, detailed speciation studies of tetravalent plutonium in contact with humic substances (HS) and kaolinite as a model clay mineral have been performed in this work. Plutonium is present in the environment at an ultratrace level. Therefore, speciation of Pu at the ultratrace level is mandatory. Capillary electrophoresis (CE) coupled to resonance ionization mass spectrometry (RIMS) was used as a new speciation method. CE-RIMS enables to improve the detection limit for plutonium species by 2 to 3 orders of magnitude compared to the previously developed CE-ICP-MS. For understanding the behavior of Pu(IV) in aqueous systems, redox reactions, complexation, and sorption behavior of plutonium were studied. The redox behavior of plutonium in contact with humic acid (HA) and fulvic acid (FA) was investigated. A relatively fast reduction of Pu(VI) in contact with HS was observed. It was mainly reduced to Pu(IV) and Pu(III) within a couple of weeks. The time dependence of the Pu(IV) complexation with Aldrich HA was investigated and a complex constant (logßLC) between 6.4 - 8.4 of Pu(IV) was determined by means of ultrafiltration taking into account the loading capacity (LC). The sorption of tetravalent plutonium onto kaolinite was investigated as a function of pH in batch experiments under aerobic and anaerobic conditions. The sorption edge was found at about pH = 1 and a maximum sorption at around pH = 8.5. In the presence of CO2 at pH > 8.5, the sorption of plutonium was decreased probably due to the formation of soluble carbonate complexes. For comparison, the sorption of Th(IV) onto kaolinite was also investigated and consistent results were found. The Pu(IV) sorption onto kaolinite was studied by XANES and EXAFS at pH 1, 4, 9 and the sorbed species on kaolinite surface was Pu(IV). Depending on the pH, only 1 - 10 % of the sorbed plutonium is desorbed from kaolinite and released into a fresh solution at the same pH value. Furthermore, the sorption of HS onto kaolinite was studied as a function of pH at varying concentrations of HS, as a prerequisite to understand the more complex ternary system. The sorption of HA onto kaolinite was found to be higher than that of FA. The investigation of the ternary systems (plutonium-kaolinite-humic substances) is performed as a function of pH, concentration of HS, and the sequences of adding the reactants. The presence of HS strongly influences the sorption of Pu(IV) onto kaolinite over the entire pH range. For comparison, the influence of HS on the sorption of Th(IV) onto kaolinite was also investigated and a good agreement with the results of Pu(IV) was obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the safety assessment of radioactive waste, the possibility of radionuclide migration has to be considered. Since Np (and also Th due to the long-lived 232-Th) will be responsible for the greatest amount of radioactivity one million years after discharge from the reactor, its (im)-mobilization in the geosphere is of great importance. Furthermore, the chemistry of Np(V) is quite similar (but not identical) to the chemistry of Pu(V). Three species of neptunium may be found in the near field of the waste disposal, but pentavalent neptunium is the most abundant species under a wide range of natural conditions. Within this work, the interaction of Np(V) with the clay mineral montmorillonite and melanodins (as model substances for humic acids) was studied. The sorption of neptunium onto gibbsite, a model clay for montmorillonite, was also investigated. The sorption of neptunium onto γ-alumina and montmorillonite was studied in a parallel doctoral work by S. Dierking. Neptunium is only found in ultra trace amounts in the environment. Therefore, sensitive and specific methods are needed for its determination. The sorption was determined by γ spectroscopy and LSC for the whole concentration range studied. In addition the combination of these techniques with ultrafiltration allowed the study of Np(V) complexation with melanoidins. Regrettably, the available speciation methods (e.g. CE-ICP-MS and EXAFS) are not capable to detect the environmentally relevant neptunium concentrations. Therefore, a combination of batch experiments and speciation analyses was performed. Further, the preparation of hybrid clay-based materials (HCM) montmorillonitemelanoidins for sorption studies was achieved. The formation of hybrid materials begins in the interlayers of the montmorillonite, and then the organic material spreads over the surface of the mineral. The sorption of Np onto HCM was studied at the environmentally relevant concentrations and the results obtained were compared with those predicted by the linear additive model by Samadfam. The sorption of neptunium onto gibbsite was studied in batch experiments and the sorption maximum determined at pH~8.5. The sorption isotherm pointed to the presence of strong and weak sorption sites in gibbsite. The Np speciation was studied by using EXAFS, which showed that the sorbed species was Np(V). The influence of M42 type melanodins on the sorption of Np(V) onto montmorillonite was also investigated at pH 7. The sorption of the melanoidins was affected by the order in which the components were added and by ionic strength. The sorption of Np was affected by ionic strength, pointing to outer sphere sorption, whereas the presence of increasing amounts of melanoidins had little influence on Np sorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit wurde im Rahmen des Verbundprojektes „Wechselwirkung und Transport von Actiniden im natürlichen Tongestein unter Berücksichtigung von Huminstoffen und Tonorganika – Wechselwirkung von Neptunium und Plutonium mit natürlichem Tongestein“ durchgeführt. Diese Untersuchungen sollen die thermodynamische Datenbasis für Actiniden erweitern sowie Informationen zur Ableitung von Bewertungskriterien für die Endlagerung radioaktiver Abfälle in Ton als Wirtsgestein, insbesondere über das Rückhaltevermögen von Tongestein gegenüber Radionukliden, liefern. Dabei stand die Anwendung verschiedener Speziationstechniken wie CE-ICP-MS, UV/VIS und die apparative Entwicklung der CE-RIMS im Vordergrund. Es sollte das Verhalten von Plutonium in umweltrelevanten Medien und Konzentrationen, im Ultraspurenbereich, untersucht werden. Unabhängig davon sollten Uranproben aus dem 2. Weltkrieg und Umweltproben des Landesamts für Umwelt und Forsten Rheinland-Pfalz auf ihren Plutoniumgehalt analysiert werden. Dazu wurde zunächst ein neues ICP-MS-Gerät Agilent 7500ce in Betrieb genommen und auf die Verwendung in Kombination mit der Kapillarelektrophorese optimiert. Die erreichte Nachweisgrenze für die vier Oxidationsstufen des Pu beträgt 0,05 ppb des gesamten Plutoniums in Lösung. Mit Hilfe der CE-ICP-MS wurde die Redoxstabilität einer Mischung aus verschiedenen Oxidationszuständen des Plutoniums in Opalinus-Ton-Porenwasser und Vergleichsmedien unter aeroben und anaeroben Bedingungen mit der CE untersucht. Die Untersuchungen zeigen das Pu(III) bis zu 40 min im verwendeten Elektrolytsystem stabil ist und dann oxidiert wird. In Porenwasser wurde als vorherrschende Spezies Pu(V) bestimmt. Die Redoxstabilität von Pu(VI) wurde untersucht, dabei wurde festgestellt, dass sich Pu(VI) bereits durch einfaches Verdünnen reduzieren lässt. Weiterhin wurden die Kd-Werte für die Sorption von Plutonium an Opalinuston unter aeroben und anaeroben Bedingungen für Pu(III) und Pu(IV) im System Porenwasser/Opalinuston von Kd(aerob) Pu(III) ≈ 53 m3/kg, Kd(aerob) Pu(IV) ≈ 14 m3/kg, Kd(anaerob) Pu(III) ≈ 114 m3/kg, Kd(anaerob) Pu(IV) ≈ 178 m3/kg bestimmt. Ein weiterer Schwerpunkt der Arbeit war die Entwicklung, Optimierung und Anwendung der Kopplung CE-RIMS zur Speziation des Plutoniums im Ultraspurenbereich. Dies konnte erfolgreich in mehreren Schritten durchgeführt und an den Proben aus den Batchversuchen zur Kd-Wert Bestimmung angewandt werden. Der Memory-Effekt des an den Kapillarwänden sorbierenden Pu(IV) konnte mit der empfindlichen Kopplung CE-RIMS ebenfalls nachgewiesen werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il recupero dei materiali di scarto è un aspetto di grande attualità in campo stradale, così come negli altri ambiti dell’ingegneria civile. L’attenzione della ricerca e degli esperti del settore è rivolta all’affinamento di tecniche di riciclaggio che riducano l’impatto ambientale senza compromettere le prestazioni meccaniche finali. Tali indagini cercano di far corrispondere le necessità di smaltimento dei rifiuti con quelle dell’industria infrastrutturale, legate al reperimento di materiali da costruzione tecnicamente idonei ed economicamente vantaggiosi. Attualmente sono già diversi i tipi di prodotti rigenerati e riutilizzati nella realizzazione delle pavimentazioni stradali e numerosi sono anche quelli di nuova introduzione in fase di sperimentazione. In particolare, accanto ai materiali derivanti dalle operazioni di recupero della rete viaria, è opportuno considerare anche quelli provenienti dall’esercizio delle attività di trasporto, il quale comporta ogni anno il raggiungimento della fine della vita utile per centinaia di migliaia di tonnellate di pneumatici di gomma. L’obiettivo della presente analisi sperimentale è quello di fornire indicazioni e informazioni in merito alla tecnica di riciclaggio a freddo con emulsione bituminosa e cemento, valutando la possibilità di applicazione di tale metodologia in combinazione con il polverino di gomma, ottenuto dal recupero degli pneumatici fuori uso (PFU). La ricerca si distingue per una duplice valenza: la prima è quella di promuovere ulteriormente la tecnica di riciclaggio a freddo, che si sta imponendo per i suoi numerosi vantaggi economici ed ambientali, legati soprattutto alla temperatura d’esercizio; la seconda è quella di sperimentare l’utilizzo del polverino di gomma, nelle due forme di granulazione tradizionale e criogenica, additivato a miscele costituite interamente da materiale proveniente da scarifica di pavimentazioni esistenti e stabilizzate con diverse percentuali di emulsione di bitume e di legante cementizio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden Entwicklungen zur Optimierung von Selektivität und Effizienz von Resonanzionisations-Laserionenquellen vorgestellt. Mit der Perspektive auf die Anwendungen radioaktiver Ionenstrahlen in der Grundlagenforschung sowie auf Fragestellungen in der Ultraspurenanalytik wurden verschiedene Methoden entwickelt und erprobt: Auf Seiten der Grundlagenforschung wurden zwei komplementäre Ansätze, die Konstruktion von Ionenquellen aus Materialien niedriger Austrittsarbeit und die Weiterentwicklung der Laserionenquelle und -falle LIST umgesetzt. Hierdurch konnte die Selektivität der Resonanzionisation in on-line Tests um einige Gröÿenordnungen verbessert werden. Für die Ultraspurenanalytik wurden speziell angepasste, hocheffiziente Ionenquellen entwickelt. Mit diesen Ionenquellen wurde für die Resonanzionisation von Gallium eine Ionisationseffizienz von 67 % demonstriert, für den Ultraspurennachweis des im Zusammenhang der nuklearen Endlagerung wichtigen Radioisotops 99g-Technetium wurde auf dieser Grundlage eine Nachweisgrenze von weniger als 10^6 Atomen gezeigt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit wurde im Rahmen des BMWi-Verbundprojektes Wechselwirkung und Transport von Aktiniden im natürlichen Tongestein unter Berücksichtigung von Huminstoffen und Tonorganika – Wechselwirkung von Neptunium und Plutonium mit natürlichem Tongestein“ durchgeführt. Um die langfristige Sicherheit der nuklearen Endlager beurteilen zu können, muss eine mögliche Migration der radiotoxischen Abfälle in die Umwelt betrachtet werden. Wegen seiner langen Halbwertszeit (24000 a) leistet Pu-239 einen wesentlichen Beitrag zur Radiotoxizität abgebrannter Kernbrennstoffe in einem Endlager. Das redox-sensitive Pu tritt in Lösung unter umweltrelevanten Bedingungen in den Oxidationsstufen +III bis +VI auf und kann nebeneinander in bis zu vier Oxidationsstufen vorliegen. Tonsteinformationen werden als mögliches Wirtsgestein für Endlager hoch-radioaktiver Abfälle betrachtet. Deshalb sind ausführliche Informationen zur Mobilisierung und Immobilisierung des Pu durch/in das Grundwasser aus einem Endlager von besonderer Bedeutung. In dieser Arbeit wurden neue Erkenntnisse über die Wechselwirkung zwischen Pu und dem natürlichen Tongestein Opalinuston (OPA, Mont Terri, Schweiz) mit Hinblick auf die Endlagerung wärmeentwickelnder radioaktiver Abfälle in einem geologischen Tiefenlager gewonnen.rnDer Fokus der Arbeit lag dabei auf der Bestimmung der Speziation von Pu an der Mineraloberfläche nach Sorptions- und Diffusionsprozessen mittels verschiedener synchrotronbasierter Methoden (µ-XRF, µ-XANES/EXAFS, µ-XRD, XANES/EXAFS). rnDie Wechselwirkung zwischen Pu und OPA wurde zunächst in Batch- und Diffusionsexperimenten in Abhängigkeit verschiedener experimenteller Parameter (u.a. pH, Pu-Oxidationsstufe) untersucht. In Sorptionsexperimenten konnte gezeigt werden, dass einige Parameter (z.B. Temperatur, Huminsäure) einen deutlichen Einfluss auf die Sorption von Pu haben.rnDie Speziationsuntersuchungen wurden zum einen an Pulverproben aus Batchexperimenten und zum anderen an OPA-Dünnschliffen bzw. Diffusionsproben in Abhängigkeit verschiedener experimenteller Parameter durchgeführt. Die EXAFS-Messungen an der Pu LIII-Kante der Pulverproben ergaben, dass eine innersphäriche Sorption von Pu(IV) an Tongestein unabhängig von dem Ausgangsoxidationszustand des Plutoniums in Lösung stattgefunden hat. Durch die Kombination der ortsaufgelösten Methoden wurde erstmalig mittels μ-XRF die Verteilung von Pu und anderen in OPA enthaltenen Elementen bestimmt. µ-XANES-Spektren an Pu-Anreicherungen auf OPA-Dünnschliffen und in Diffusionsproben bestätigen, dass das weniger mobile Pu(IV) die dominierende Spezies nach den Sorptions- und Diffusionsprozessen ist. Darüber hinaus wurde zum ersten Mal ein Diffusionsprofil von Pu in OPA mittels µ-XRF gemessen. Die Speziationsuntersuchungen mittels μ-XANES zeigten, dass das eingesetzte Pu(V) entlang seines Diffusionspfades zunehmend zu Pu(IV) reduziert wird. Mit µ-XRD wurde Illit als dominierende Umgebung, in der Pu angereichert wurde, identifiziert und Siderit als eine redoxaktive Phase auftreten kann. Die Ergebnisse dieser Arbeit zeigen, dass die Sicherheit von OPA als Wirtsgestein eines Endlagers hoch-radioaktiver Abfälle positiv zu bewerten ist. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The United States disposes roughly 60% of the municipal solid waste it generates each year in solid waste disposal facilities, commonly known as landfills. Hedonic pricing studies have estimated the external costs of landfills on neighboring housing markets, but the literature is silent on what happens to property values after the landfill closes. Original housing price data collected both before and after a landfill closure are used to estimate how a landfill closure affects neighboring property values. Results of both a hedonic pricing model and repeat-sales estimator are used in the analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seventeen polycyclic aromatic hydrocarbons (PAHs) were studied in surface waters (including particulate phase) from the Chenab River, Pakistan and ranged from 289-994 and 437-1290 ng l-1 in summer and winter (2007-09), respectively. Concentrations for different ring-number PAHs followed the trend: 3-rings > 2-rings > 4-rings > 5-rings > 6-rings. The possible sources of PAHs are identified by calculating the indicative ratios; appropriating petrogenic sources of PAHs in urban and sub-urban regions with pyrogenic sources in agricultural region. Factor analysis based on principal component analysis identified the origins of PAHs from industrial activities, coal and trash burning in agricultural areas and municipal waste disposal from surrounding urban and sub-urban areas via open drains into the riverine ecosystem. Water quality guidelines and toxic equivalent factors highlighted the potential risk of low molecular weight PAHs to the aquatic life of the Chenab River. The flux estimated for PAHs contaminants from the Chenab River to the Indus River was >50 tons/year.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diffusion of radionuclides is an important safety aspect for nuclear waste disposal in argillaceous host rocks. A long-term diffusion experiment, termed DI-A, is being carried out at the Mont Terri Rock Laboratory in the Opalinus Clay formation. The aim of this experiment is the understanding of the migration and sorption behaviour of cationic and anionic species in consolidated clays. This study reports on the experimental layout and the first results obtained from the DI-A experiment, which include the investigation of HTO, Na-22(+), Cs+, and I- migration during a period of 1 year by analysing these tracers in the water circulating in the borehole. In addition, results obtained from through-diffusion experiments on small-sized samples with HTO, I-, and Cl-36(-) are presented. The decrease of tracer concentrations in the borehole is fastest for Cs+, followed by Na-22(+), HTO, and finally I-. The chemical composition of the artificial pore water in the borehole shows very little variation with time, thus indicating almost no chemical disturbance around the borehole. Through-diffusion experiments in the laboratory that were performed parallel to the bedding plane with two different methods yielded effective diffusion coefficients for HTO of 4-5 X 10(-11) m(2) s(-1) and significantly lower ones for anions Cl- and I- (0.7-1.6 X 10(-11) m(2) s(-1)). The results indicate the importance of anion exclusion effects arising from the negatively charged clay surfaces. Furthermore, they demonstrate the anisotropic diffusion properties of the clay formation with significantly increased diffusion rates parallel to bedding relative to the perpendicular direction. The tracer data of the in situ experiment were successfully described with 2D diffusion models using diffusion and sorption parameters obtained from the above mentioned and other laboratory studies. The modelling results indicate that HTO and I- diffused with no retardation. The retardation of Na+ and Cs+ could be described by empirical sorption expressions from previously derived batch sorption (Cs+) or diffusion (Na+) experiments. Overall, the obtained results demonstrate the feasibility of the technical concept to study the diffusion of nonsorbing and sorbing tracers in consolidated clays. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical and isotopic characterization of porewater residing in the inter- and intragranular pore space of the low-permeability rock matrix is an important component with respect to the site characterization and safety assessment of potential host rocks for a radioactive waste disposal. The chemical and isotopic composition of porewater in such low permeability rocks has to be derived by indirect extraction techniques applied to naturally saturated rock material. In most of such indirect extraction techniques – especially in case of rocks of a porosity below about 2 vol.% – the original porewater concentrations are diluted and need to be back-calculated to in-situ concentrations. This requires a well-defined value for the connected porosity – accessible to different solutes under in-situ conditions. The derivation of such porosity values, as well as solute concentrations, is subject to various perturbations during drilling, core sampling, storage and experiments in the laboratory. The present study aims to demonstrate the feasibility of a variety of these techniques to charac-terize porewater and solute transport in crystalline rocks. The methods, which have been de-veloped during multiple porewater studies in crystalline environments, were applied on four core samples from the deep borehole DH-GAP04, drilled in the Kangerlussuaq area, Southwest Greenland, as part of the joint NWMO–Posiva–SKB Greenland Analogue Project (GAP). Potential artefacts that can influence the estimation of in situ porewater chemistry and isotopes, as well as their controls, are described in detail in this report, using specific examples from borehole DH-GAP04

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Argillaceous rocks are considered to be a suitable geological barrier for the long-term containment of wastes. Their efficiency at retarding contaminant migration is assessed using reactive-transport experiments and modeling, the latter requiring a sound understanding of pore-water chemistry. The building of a pore-water model, which is mandatory for laboratory experiments mimicking in situ conditions, requires a detailed knowledge of the rock mineralogy and of minerals at equilibrium with present-day pore waters. Using a combination of petrological, mineralogical, and isotopic studies, the present study focused on the reduced Opalinus Clay formation (Fm) of the Benken borehole (30 km north of Zurich) which is intended for nuclear-waste disposal in Switzerland. A diagenetic sequence is proposed, which serves as a basis for determining the minerals stable in the formation and their textural relationships. Early cementation of dominant calcite, rare dolomite, and pyrite formed by bacterial sulfate reduction, was followed by formation of iron-rich calcite, ankerite, siderite, glauconite, (Ba, Sr) sulfates, and traces of sphalerite and galena. The distribution and abundance of siderite depends heavily on the depositional environment (and consequently on the water column). Benken sediment deposition during Aalenian times corresponds to an offshore environment with the early formation of siderite concretions at the water/sediment interface at the fluctuating boundary between the suboxic iron reduction and the sulfate reduction zones. Diagenetic minerals (carbonates except dolomite, sulfates, silicates) remained stable from their formation to the present. Based on these mineralogical and geochemical data, the mineral assemblage previously used for the geochemical model of the pore waters at Mont Terri may be applied to Benken without significant changes. These further investigations demonstrate the need for detailed mineralogical and geochemical study to refine the model of pore-water chemistry in a clay formation.