921 resultados para Vriesea species complex
Resumo:
Goldstone's idea of slow dynamics resulting from spontaneously broken symmetries is applied to Hubbell's neutral hypothesis of community dynamics, to efficiently simplify stage-structured multi-species models-introducing the quasi-neutral approximation (QNA). Rather than assuming population-dynamical neutrality in the QNA, deviations from ideal neutrality, thought to be small, drive dynamics. The QNA is systematically derived to first and second order in a two-scale singular perturbation expansion. The total reproductive value of species, as computed from the effective life-history parameters resulting from the non-linear interactions with the surrounding community, emerges as the new dynamic variables in this aggregated description. Using a simple stage-structured community-assembly model, the QNA is demonstrated to accurately reproduce population dynamics in large, complex communities. Further, the utility of the QNA in building intuition for management problems is illustrated by estimating the responses of a fish stock to harvesting and variations in fecundity.
Resumo:
Aim We carried out a phylogeographic study across the range of the herbaceous plant species Monotropa hypopitys L. in North America to determine whether its current disjunct distribution is due to recolonization from separate eastern and western refugia after the Last Glacial Maximum (LGM). Location North America: Pacific Northwest and north-eastern USA/south-eastern Canada. Methods Palaeodistribution modelling was carried out to determine suitable climatic regions for M. hypopitys at the LGM. We analysed between 155 and 176 individuals from 39 locations spanning the species' entire range in North America. Sequence data were obtained for the chloroplast rps2 gene (n=168) and for the nuclear ITS region (n=158). Individuals were also genotyped for eight microsatellite loci (n=176). Interpolation of diversity values was used to visualize the range-wide distribution of genetic diversity for each of the three marker classes. Minimum spanning networks were constructed showing the relationships between the rps2 and ITS haplotypes, and the geographical distributions of these haplotypes were plotted. The numbers of genetic clusters based on the microsatellite data were estimated using Bayesian clustering approaches. Results The palaeodistribution modelling indicated suitable climate envelopes for M. hypopitys at the LGM in both the Pacific Northwest and south-eastern USA. High levels of genetic diversity and endemic haplotypes were found in Oregon, the Alexander Archipelago, Wisconsin, and in the south-eastern part of the species' distribution range. Main conclusions Our results suggest a complex recolonization history for M. hypopitys in North America, involving persistence in separate eastern and western refugia. A generally high degree of congruence between the different marker classes analysed indicated the presence of multiple refugia, with at least two refugia in each area. In the west, putative refugia were identified in Oregon and the Alexander Archipelago, whereas eastern refugia may have been located in the southern part of the species' current distribution, as well as in the 'Driftless Area'. These findings are in contrast to a previous study on the related species Orthilia secunda, which has a similar disjunct distribution to M. hypopitys, but which appears to have recolonized solely from western refugia. © 2011 Blackwell Publishing Ltd.
Resumo:
The new diarylplatinum complex Cis-[Pt(PEt(3))(2){C6H3(CH(2)NMe(2))(2)-3,5}(2)] 1, containing four free amine coordination sites, undergoes directed lithiation with Bu(t)Li and subsequent transmetallation with [PtCl2(SEt(2))(2)] to give a triplatinum species 3 which reductively eliminates the diplatinum complex[ClPt{2,6-(Me(2)NCH(2))(2)C6H2-C6H2(CH(2)NMe(2))(2)-2,6}PtCl] 4.
Resumo:
Raman spectroelectrochemical and X-ray crystallographic studies have been made for the binuclear copper(I) complex, [(Ph(3)P)(2)Cu(dpq)Cu(PPh(3))(2)][BF4](2), where dpq is the bridging ligand 2,3-di(2-pyridyl)quinoxaline. The X-ray data show that the pyridine rings are twisted out of plane with respect to the quinoxaline ring which is itself non-planar. The UV/VIS spectra of the metal-to-ligand charge-transfer excited state and those of the electrochemically reduced complex are similar. The resonance-Raman spectrum of the latter species exhibits little change in the frequency of the pyridinylquinoxaline inter-ring C-C bond stretching mode, compared to the ground electronic state. This suggests minimum change in the inter-ring C-C bond order in the electrochemically or charge-transfer generated radical anion. Semiempirical molecular-orbital calculations on both the neutral dpq and radical anion show two near-degenerate lowest unoccupied orbitals in the neutral species. One is strongly bonding across the inter-ring C-C bond while the other is almost nun-bonding. The Raman data suggest that it is this latter orbital which is populated in the transient and electrochemical experiments.
Resumo:
Sweat bees (Halictidae) exhibit great interspecific and intraspecific diversity in their social organisation, yet there is remarkably little information on the sociogenetic organisation of any species. Lasioglossum malachurum is a eusocial sweat bee with an annual lifecycle that exhibits considerable variation in its social organisation across its wide geographic range from northern to southern Europe. We collected all adults from 31 L. malachurum nests at Eichkogl, Austria, near the latitudinal centre of its distribution, and genotyped 148 workers using 5 highly variable microsatellite loci developed for this species. Nests were often queenless (48% of nests) during the second phase of worker activity, when colonies were provisioning the sexual brood. Pedigree reconstruction and estimates of nestmate genetic relatedness demonstrated that nests often (32% of nests) contained alien workers, probably as a result of worker drifting from their natal to a foreign nest. Queen effective mating frequency was variable (harmonic mean m(e) = 1.24), but sometimes high (maximum 2.7). These data demonstrate that nests of L. malachurum do not have a classical eusocial sociogenetic organisation (monogyny, monandry) and thereby pose a challenge to exclusively relatedness based arguments for the evolution of eusociality in the taxon.
Resumo:
P>1. We established complex marine communities, consisting of over 100 species, in large subtidal experimental mesocosms. We measured the strength of direct interactions and the net strength of direct and indirect interactions between the species in those communities, using a combination of theoretical and empirical approaches.
Resumo:
The pattern of predator-prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system.
Resumo:
This paper is concerned with the chemical evolution of large molecules in interstellar clouds. We consider the chemistry and ionisation balance of large polycyclic aromatic hydrocarbon (PAH) type molecules in diffuse clouds and show that certain PAH molecules can be doubly ionised by the interstellar ultraviolet radiation field. If recombination of the dications so produced with electrons is dissociative rather than radiative, then PAHs are rapidly destroyed. PAHs which can only be singly ionised have much smaller recombination energies and can be long lasting in these regions. This type of property may be very important in selecting the PAH species which can populate the general interstellar medium and account for certain of the diffuse bands observed in optical spectra. Destruction of PAH molecules via formation of dications may be responsible for the weakening of the diffuse bands observed in regions of high UV flux.
Resumo:
Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)(2)](+), where cycb = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate( III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates.
Resumo:
The Gymnogongrus devoniensis (Greville) Schotter complex in the North Atlantic Ocean was elucidated by comparative molecular, morphological, and culture studies. Restriction fragment length patterns and hybridization data on organellar DNA revealed two distinct taxa in samples from Europe and eastern Canada. Nucleotide sequences for the intergenic spacer between the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and the adjoining regions of both genes, differed by 12.5-13.4% between the two taxa. One of the taxa, which included material from the type locality of G. devoniensis at Torbay, Devon, England, was taken to represent authentic G. devoniensis. Within this taxon, samples from Ireland, England, northern France, northern Spain, and southern Portugal showed great morphological variation, particularly in habit, but their Rubisco spacer sequences were identical or differed by only a single nucleotide. Constant morphological features included the development, from a single auxiliary cell, of the spherical cystocarp with a thick mucilage sheath that appears to be typical of Gymnogongrus species with internal cystocarps. Two life-history types were found. Northern isolates underwent a direct-type life history, recycling apomictic females by carpospores, whereas the Portuguese isolate followed a heteromorphic life history in which carpospores gave rise to a crustose tetrasporophyte.
Resumo:
1. Global declines in biodiversity have stimulated much research into the consequences of species loss for ecosystems and the goods and services they provide. Species at higher trophic levels are at greater risk of human-induced extinction yet remarkably little is known about the effects of consumer species loss across multiple trophic levels in natural complex ecosystems. Previous studies have been criticized for lacking experimental realism and appropriate temporal scale, running for short periods that are not sufficient to detect many of the mechanisms operating in the field.
2. We manipulated the presence of two predator species and two groups of their prey (primary consumers) and measured their independent and interactive effects on primary producers in a natural marine benthic system. The presence of predators and their prey was manipulated in the field for 14 months to distinguish clearly the direct and indirect effects of predators on primary producers and to identify mechanisms driving responses.
3. We found that the loss of either predator species had indirect negative effects on species diversity and total cover of primary producers. These cascading effects of predator species loss were mediated by the presence of intermediate consumers. Moreover, the presence of different intermediate consumers, irrespective of the presence or absence of their predators, determined primary producer assemblage structure. We identified direct negative effects of predators on their prey and several indirect effects of predators on primary producers but not all interactions could have been predicted based on trophic level.
4. Our findings demonstrate the importance of trophic cascade effects coupled with non-trophic interactions when predicting the effects of loss of predator species on primary producers and consequently for ecosystem functioning. There is a pressing need for improved understanding of the effects of loss of consumers, based on realistic scenarios of diversity loss, to test conceptual frameworks linking predator diversity to variation in ecosystem functioning and for the protection of biodiversity, ecosystem functioning and related services.
Resumo:
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Resumo:
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In view of both the delay in obtaining identification by conventional methods following blood-culture positivity in patients with candidaemia and the close relationship between species and fluconazole (FLC) susceptibility, early speciation of positive blood cultures has the potential to influence therapeutic decisions. The aim was to develop a rapid test to differentiate FLC-resistant from FLC-sensitive Candida species. Three TaqMan-based real-time PCR assays were developed to identify up to six Candida species directly from BacT/Alert blood-culture bottles that showed yeast cells on Gram staining at the time of initial positivity. Target sequences in the rRNA gene complex were amplified, using a consensus two-step PCR protocol, to identify Candida albicans, Candida parapsilosis, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida krusei; these are the most commonly encountered Candida species in blood cultures. The first four of these (the characteristically FLC-sensitive group) were identified in a single reaction tube using one fluorescent TaqMan probe targeting 1 8S rRNA sequences conserved in the four species. The FLC-resistant species C. krusei and C. glabrata were detected in two further reactions, each with species-specific probes. This method was validated with clinical specimens (blood cultures) positive for yeast (n=33 sets) and the results were 100% concordant with those of phenotypic identification carried out concomitantly. The reported assay significantly reduces the time required to identify the presence of C. glabrata and C. krusei in comparison with a conventional phenotypic method, from ~72 to