964 resultados para Volumetric MRI
Resumo:
In fetal brain MRI, most of the high-resolution reconstruction algorithms rely on brain segmentation as a preprocessing step. Manual brain segmentation is however highly time-consuming and therefore not a realistic solution. In this work, we assess on a large dataset the performance of Multiple Atlas Fusion (MAF) strategies to automatically address this problem. Firstly, we show that MAF significantly increase the accuracy of brain segmentation as regards single-atlas strategy. Secondly, we show that MAF compares favorably with the most recent approach (Dice above 0.90). Finally, we show that MAF could in turn provide an enhancement in terms of reconstruction quality.
Resumo:
OBJECTIVE: To evaluate a comprehensive MRI protocol that investigates for cancer, vascular disease, and degenerative/inflammatory disease from the head to the pelvis in less than 40 minutes on a new generation 48-channel 3T system. MATERIALS AND METHODS: All MR studies were performed on a 48-channel 3T MR scanner. A 20-channel head/neck coil, two 18-channel body arrays, and a 32-channel spine array were employed. A total of 4 healthy individuals were studied. The designed protocol included a combination of single-shot T2-weighted sequences, T1-weighted 3D gradient-echo pre- and post-gadolinium. All images were retrospectively evaluated by two radiologists independently for overall image quality. RESULTS: The image quality for cancer was rated as excellent in the liver, pancreas, kidneys, lungs, pelvic organs, and brain, and rated as fair in the colon and breast. For vascular diseases ratings were excellent in the aorta, major branch vessel origins, inferior vena cava, portal and hepatic veins, rated as good in pulmonary arteries, and as poor in the coronary arteries. For degenerative/inflammatory diseases ratings were excellent in the brain, liver and pancreas. The inter-observer agreement was excellent. CONCLUSION: A comprehensive and time efficient screening for important categories of disease processes may be achieved with high quality imaging in a new generation 48-channel 3T system.
Resumo:
MRI has become a major tool for the diagnosis of axial spondyloarthritis and provides objective signs based on which therapy can be initiated. In clinical practice, ASAS classification criteria are often applied for the diagnosis of spondyloarthritis at a pre-radiographic stage. However, MRI signs of spondyloarthritis as stated in ASAS criteria lack specificity, and can be encountered in a wide array of diagnoses, in particular degenerative and mechanical conditions. In this article, we will review the role of MRI in the diagnosis and classification of spondyloarthritis, general technical considerations, the elementary MRI signs of axial spondyloarthritis, as well as diagnostic pitfalls. We also provide a practical approach on how to avoid overdiagnosis of spondyloarthritis and to improve the diagnostic value of MRI.
Resumo:
Food allergies are believed to be on the rise and currently management relies on the avoidance of the food. Hen's egg allergy is after cow's milk allergy the most common food allergy; eggs are used in many food products and thus difficult to avoid. A technological process using a combination of enzymatic hydrolysis and heat treatment was designed to produce modified hen's egg with reduced allergenic potential. Biochemical (SDS-PAGE, Size exclusion chromatography and LC-MS/MS) and immunological (ELISA, immunoblot, RBL-assays, animal model) analysis showed a clear decrease in intact proteins as well as a strong decrease of allergenicity. In a clinical study, 22 of the 24 patients with a confirmed egg allergy who underwent a double blind food challenge with the hydrolysed egg remained completely free of symptoms. Hydrolysed egg products may be beneficial as low allergenic foods for egg allergic patients to extent their diet. This article is protected by copyright. All rights reserved.
Resumo:
Abstract Objective: To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods: Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results: For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion: The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition.
Resumo:
The outcome from traumatic brain injury (TBI) is variable and only partly explained by known prognostic factors. This is especially true for predicting long-term outcome. Genetic factors may influence the brain`s susceptibility to injury or capacity for repair and regeneration. To examine the association of apolipoproteinE (apoE) genotype with long-term outcome, hippocampal volumes and general brain atrophy, we determined the apoE genotype from 61 TBI patients who had been injured over on average 31 years earlier. The long-term outcome was evaluated with repeated neuropsychological testing and by applying various measures of everyday functioning and quality of life. Magnetic resonance imaging (MRI) based volumetric analyses of the hippocampus and lateral ventricles were performed. In the prospective study, the purpose was to examine the association between apoE genotype and visibility of traumatic brain lesions during the first year after TBI and the ability of apoE genotype, the Glasgow Coma Score (GCS), MRI findings and duration of posttraumatic amnesia (PTA) to predict the one-year outcome. Thirty-three patients with TBI were studied and the outcome was evaluated with the Head Injury Symptom Checklist (HISC) and the Glasgow Outcome Scale extended version (GOS-E) scores one year after the injury. MRI and apoE genotyping were carried out. After three decades, neither hippocampal nor lateral ventricle volumes differed significantly in those patients with the apoE ε4 allele vs those without this allele, but the TBI patients with the apoE ε4 allele showed significantly poorer general cognitive level than those without this allele. This decline was wholly accounted for by a subgroup of patients who had developed incident or clinical dementia. In the prospective study the apoE genotype was not associated with visible MRI changes or outcome. The duration of PTA and acute MRI were the best predictors of one-year outcome in TBI. A portion of the TBI patients with the apoE ε4 allele seem to be at risk of long-term cognitive decline. This association may involve mechanisms other than those responsible for the development of brain atrophy. The early MRI and PTA have an important role in assessing the injury severity and prognosis.
Resumo:
BACKGROUND AND PURPOSE: The high variability of CSF volumes partly explains the inconsistency of anesthetic effects, but may also be due to image analysis itself. In this study, criteria for threshold selection are anatomically defined. METHODS: T2 MR images (n = 7 cases) were analyzed using 3-dimentional software. Maximal-minimal thresholds were selected in standardized blocks of 50 slices of the dural sac ending caudally at the L5-S1 intervertebral space (caudal blocks) and middle L3 (rostral blocks). Maximal CSF thresholds: threshold value was increased until at least one voxel in a CSF area appeared unlabeled and decreased until that voxel was labeled again: this final threshold was selected. Minimal root thresholds: thresholds values that selected cauda equina root area but not adjacent gray voxels in the CSF-root interface were chosen. RESULTS: Significant differences were found between caudal and rostral thresholds. No significant differences were found between expert and nonexpert observers. Average max/min thresholds were around 1.30 but max/min CSF volumes were around 1.15. Great interindividual CSF volume variability was detected (max/min volumes 1.6-2.7). CONCLUSIONS: The estimation of a close range of CSF volumes which probably contains the real CSF volume value can be standardized and calculated prior to certain intrathecal procedures
Resumo:
Many cognitive deficits after TBI (traumatic brain injury) are well known, such as memory and concentration problems, as well as reduced information-processing speed. What happens to patients and cognitive functioning after immediate recovery is poorly known. Cognitive functioning is flexible and may be influenced by genetic, psychological and environmental factors decades after TBI. The general aim of this thesis was to describe the long-term cognitive course after TBI, to find variables that may contribute to it, and how the cognitive functions after TBI are associated with specific medical factors and reduced survival. The original study group consisted of 192 patients with TBI who were originally assessed with the Mild Deterioration Battery (MDB) on average two years after the injury, during the years 1966 – 1972. During a 30-year follow-up, we studied the risks for reduced survival, and the mortality of the patients was compared with the general population using the Standardized Mortality Ratio (SMR). Sixty-one patients were re-assessed during 1998-2000. These patients were evaluated with the MDB, computerized testing, and with various other neuropsychological methods for attention and executive functions. Apolipoprotein-E (ApoE) genotyping and magnetic resonance imaging (MRI) based on volumetric analysis of the hippocampus and lateral ventricles were performed. Depressive symptoms were evaluated with the short form of the Beck depression inventory. The cognitive performance at follow-up was compared with a control group that was similar to the study group in regard to age and education. The cognitive outcome of the patients with TBI varied after three decades. The majority of the patients showed a decline in their cognitive level, the rest either improved or stayed at the same level. Male gender and higher age at injury were significant risk factors for the decline. Whereas most cognitive domains declined during the follow-up, semantic memory behaved in the opposite way, showing recovery after TBI. In the follow-up assessment, the memory decline and impairments in the set-shifting domain of executive functions were associated with MRI-volumetric measures, whereas reduction in information-processing speed was not associated with the MRI measures. The presence of local contusions was only weakly associated with cognitive functions. Only few cognitive methods for attention were capable of discriminating TBI patients with and without depressive symptoms. On the other hand, most complex attentional tests were sensitive enough to discriminate TBI patients (non-depressive) from controls. This means that complex attention functions, mediated by the frontal lobes, are relatively independent of depressive symptoms post-TBI. The presence of ApoE4 was associated with different kinds of memory processes including verbal and visual episodic memory, semantic memory and verbal working memory, depending on the length of time since TBI. Many other cognitive processes were not affected by the presence of ApoE4. Age at injury and poor vocational outcome were independent risk factors for reduced survival in the multivariate analysis. Late mortality was higher among younger subjects (age < 40 years at death) compared with the general population which should be borne in mind when assessing the need for rehabilitation services and long-term follow-up after TBI.
Resumo:
The present study aimed to determine the volumetric shrinkage rate of bean (Phaseolus vulgaris L.) seeds during air-drying under different conditions of air, temperature and relative humidity, and to adjust several mathematical models to the empiric values observed, and select the one that best represents the phenomenon. Six mathematical models were adjusted to the experimental values to represent the phenomenon. It was determined the degree of adjustment of each model from the value of the coefficient of determination, the behavior of the distribution of the residuals, and the magnitude of the average relative and estimated errors. The rate of volumetric shrinkage that occurred in bean seeds during drying is between 25 and 37%. It basically depends on the final moisture content, regardless of the air conditions during drying. The Modified Bala & Woods' model best represented the process.
Resumo:
The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, to estimate the volumetric water content in a Distroferric Red Latosol. The calibration was carried out in a laboratory with disturbed soil samples under study, packed in PVC columns of a volume of 0.0078m³. The TDR probes were handcrafted with three rods and 0.20m long. They were vertically installed in soil columns, with a total of five probes per column and sixteen columns. The weightings were carried out in a digital scale, while daily readings of dielectric constant were obtained in TDR equipment. The linear model θν = 0.0103 Ka + 0.1900 to estimate the studied volumetric water content showed an excellent coefficient of determination (0.93), enabling the use of probes in indirect estimation of soil moisture.