969 resultados para Viscoelastic Differential Model
Resumo:
A study on the manoeuvrability of a riverine support patrol vessel is made to derive a mathematical model and simulate maneuvers with this ship. The vessel is mainly characterized by both its wide-beam and the unconventional propulsion system, that is, a pump-jet type azimuthal propulsion. By processing experimental data and the ship characteristics with diverse formulae to find the proper hydrodynamic coefficients and propulsion forces, a system of three differential equations is completed and tuned to carry out simulations of the turning test. The simulation is able to accept variable speed, jet angle and water depth as input parameters and its output consists of time series of the state variables and a plot of the simulated path and heading of the ship during the maneuver. Thanks to the data of full-scale trials previously performed with the studied vessel, a process of validation was made, which shows a good fit between simulated and full-scale experimental results, especially on the turning diameter
Resumo:
This paper analyzes the noise and gain measurement of microwave differential amplifiers using two passive baluns. A general model of the baluns is considered, including potential losses and phase/amplitude unbalances. This analysis allows de-embedding the actual gain and noise performance of the isolated amplifier by using single-ended measurements of the cascaded system and baluns. Finally, measured results from two amplifier prototypes are used to validate the theoretical principles.
Resumo:
This paper analyses the noise and gain measurement of microwave differential amplifiers using two passive baluns. A model of the baluns that includes potential losses and unbalances has been considered. This analysis allows to de-embed the actual performance of the differential device from the single-ended measurements of the two-port cascaded system and the baluns. The method has been validated with measured results from a fully-differential amplifier prototype.
Resumo:
The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems remain today untreatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting functions, seems to be a key point to render efficient boundary element simulations.
Resumo:
We consider non-negative solution of a chemotaxis system with non constant chemotaxis sensitivity function X. This system appears as a limit case of a model formorphogenesis proposed by Bollenbach et al. (Phys. Rev. E. 75, 2007).Under suitable boundary conditions, modeling the presence of a morphogen source at x=0, we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover,we prove the convergence of the solution to the unique steady state provided that ? is small and ? is large enough. Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
The dynamics of a gas-filled microbubble encapsulated by a viscoelastic fluid shell immersed in a Newtonian liquid and subject to an external pressure field is theoretically studied. The problem is formulated by considering a nonlinear Oldroyd type constitutive equation to model the rheological behavior of the fluid shell. Heat and mass transfer across the surface bubble have been neglected but radiation losses due to the compressibility of the surrounding liquid have been taken into account. Bubble collapse under sudden increase of the external pressure as well as nonlinear radial oscillations under ultrasound fields are investigated. The numerical results obtained show that the elasticity of the fluid coating intensifies oscillatory collapse and produces a strong increase of the amplitudes of radial oscillations which may become chaotic even for moderate driving pressure amplitudes. The role played by the elongational viscosity has also been analyzed and its influence on both, bubble collapse and radial oscillations, has been recognized. According to the theoretical predictions provided in the present work, a microbubble coated by a viscoelastic fluid shell is an oscillating system that, under acoustic driving, may experience volume oscillations of large amplitude, being, however, more stable than a free bubble. Thus, it could be expected that such a system may have a suitable behavior as an echogenic agent.
Resumo:
This paper presents a Finite Element Model, which has been used for forecasting the diffusion of innovations in time and space. Unlike conventional models used in diffusion literature, the model considers the spatial heterogeneity. The implementation steps of the model are explained by applying it to the case of diffusion of photovoltaic systems in a local region in southern Germany. The applied model is based on a parabolic partial differential equation that describes the diffusion ratio of photovoltaic systems in a given region over time. The results of the application show that the Finite Element Model constitutes a powerful tool to better understand the diffusion of an innovation as a simultaneous space-time process. For future research, model limitations and possible extensions are also discussed.
Resumo:
We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.
Resumo:
We present an approach for evaluating the efficacy of combination antitumor agent schedules that accounts for order and timing of drug administration. Our model-based approach compares in vivo tumor volume data over a time course and offers a quantitative definition for additivity of drug effects, relative to which synergism and antagonism are interpreted. We begin by fitting data from individual mice receiving at most one drug to a differential equation tumor growth/drug effect model and combine individual parameter estimates to obtain population statistics. Using two null hypotheses: (i) combination therapy is consistent with additivity or (ii) combination therapy is equivalent to treating with the more effective single agent alone, we compute predicted tumor growth trajectories and their distribution for combination treated animals. We illustrate this approach by comparing entire observed and expected tumor volume trajectories for a data set in which HER-2/neu-overexpressing MCF-7 human breast cancer xenografts are treated with a humanized, anti-HER-2 monoclonal antibody (rhuMAb HER-2), doxorubicin, or one of five proposed combination therapy schedules.