971 resultados para Video tracking
Resumo:
This study examined the tracking of selected measures of physical activity, inactivity, and fitness in a cohort of rural youth. Students (N = 181, 54.7% female, 63.5% African American) completed test batteries during their fifth-(age = 10.7 +/- 0.7 years), sixth-, and seventh-grade years. The Previous Day Physical Activity Recall (PDPAR) was used to assess 30-min blocks of vigorous physical activity (VPA), moderate-to-vigorous physical activity (MVPA), TV watching and other sedentary activities, and estimated energy expenditure (EE). Fitness measures included the PWC 170 cycle ergometer test, strength tests, triceps skinfold thickness, and BMI. Intraclass correlation coefficients (ICCs) for VPA, MVPA, and after-school EE ranged from 0.63 to 0.78. ICCs ranged from 0.49 to 0.71 for measures of inactivity and from 0.78 to 0.82 for the fitness measures. These results indicate that measures of physical activity, inactivity, and physical fitness tend to track during the transition from elementary to middle school.
Resumo:
Multiplayer Dynamic Difficulty Adjustment (mDDA) is a method of reducing the difference in player performance and subsequent challenge in competitive multiplayer video games. As a balance of between player skill and challenge experienced is necessary for optimal player experience, this experimental study investigates the effects of mDDA and awareness of its presence on player performance and experience using subjective and biometric measures. Early analysis indicates that mDDA normalizes performance and challenge as expected, but awareness of its presence can reduce its effectiveness.
Resumo:
The location of previously unseen and unregistered individuals in complex camera networks from semantic descriptions is a time consuming and often inaccurate process carried out by human operators, or security staff on the ground. To promote the development and evaluation of automated semantic description based localisation systems, we present a new, publicly available, unconstrained 110 sequence database, collected from 6 stationary cameras. Each sequence contains detailed semantic information for a single search subject who appears in the clip (gender, age, height, build, hair and skin colour, clothing type, texture and colour), and between 21 and 290 frames for each clip are annotated with the target subject location (over 11,000 frames are annotated in total). A novel approach for localising a person given a semantic query is also proposed and demonstrated on this database. The proposed approach incorporates clothing colour and type (for clothing worn below the waist), as well as height and build to detect people. A method to assess the quality of candidate regions, as well as a symmetry driven approach to aid in modelling clothing on the lower half of the body, is proposed within this approach. An evaluation on the proposed dataset shows that a relative improvement in localisation accuracy of up to 21 is achieved over the baseline technique.
Resumo:
This paper investigates compressed sensing using hidden Markov models (HMMs) and hence provides an extension of recent single frame, bounded error sparse decoding problems into a class of sparse estimation problems containing both temporal evolution and stochastic aspects. This paper presents two optimal estimators for compressed HMMs. The impact of measurement compression on HMM filtering performance is experimentally examined in the context of an important image based aircraft target tracking application. Surprisingly, tracking of dim small-sized targets (as small as 5-10 pixels, with local detectability/SNR as low as − 1.05 dB) was only mildly impacted by compressed sensing down to 15% of original image size.
Resumo:
The session explores the potential for “Patron Driven Acquisition” (PDA) as a model for the acquisition of online video. Today, PDA has become a standard model of acquisition in the eBook market, more effectively aligning spend with use and increased return on investment (ROI). PDA is an unexplored model for acquisition of video, for which library collection development is complicated by higher storage and delivery costs, labor overheads for content selection and acquisition, and a dynamic film industry in which media and the technology that supports it is changing daily. Queensland University of Technology (QUT) and La Trobe University in Australia launched a research project in collaboration with Kanopy to explore the opportunity for PDA of video. The study relied on three data sources: (1) national surveys to compare the video purchasing and use practices of colleges, (2) on-campus pilot projects of PDA models to assess user engagement and behavior, and (3) testing of various user applications and features to support the model. The study incorporates usage statistics and survey data and builds upon a peer-reviewed research paper presented at the VALA 2014 conference in Melbourne, Australia. This session will be conducted by the researchers and will graphically present the results from the study. It will map out a future for video PDA, and how libraries can more cost-effectively acquire and maximize the discoverability of online video. The presenters will also solicit input and welcome questions from audience members.
Resumo:
Due to extension of using CCTVs and the other video security systems in all areas, these sorts of devices have been introduced as the most important digital evidences to search and seizure crimes. Video forensics tools are developed as a part of digital forensics tools to analyze digital evidences and clear vague points of them for presenting in the courts Existing video forensics tools have been facilitated the investigation process by providing different features based on various video editing techniques. In this paper, some of the most popular video forensics tools are discussed and the strengths and shortages of them are compared and consequently, an alternative framework which includes the strengths of existing popular tools is introduced.
Resumo:
In elite sports, nearly all performances are captured on video. Despite the massive amounts of video that has been captured in this domain over the last 10-15 years, most of it remains in an 'unstructured' or 'raw' form, meaning it can only be viewed or manually annotated/tagged with higher-level event labels which is time consuming and subjective. As such, depending on the detail or depth of annotation, the value of the collected repositories of archived data is minimal as it does not lend itself to large-scale analysis and retrieval. One such example is swimming, where each race of a swimmer is captured on a camcorder and in-addition to the split-times (i.e., the time it takes for each lap), stroke rate and stroke-lengths are manually annotated. In this paper, we propose a vision-based system which effectively 'digitizes' a large collection of archived swimming races by estimating the location of the swimmer in each frame, as well as detecting the stroke rate. As the videos are captured from moving hand-held cameras which are located at different positions and angles, we show our hierarchical-based approach to tracking the swimmer and their different parts is robust to these issues and allows us to accurately estimate the swimmer location and stroke rates.
Resumo:
We propose a method of representing audience behavior through facial and body motions from a single video stream, and use these features to predict the rating for feature-length movies. This is a very challenging problem as: i) the movie viewing environment is dark and contains views of people at different scales and viewpoints; ii) the duration of feature-length movies is long (80-120 mins) so tracking people uninterrupted for this length of time is still an unsolved problem, and; iii) expressions and motions of audience members are subtle, short and sparse making labeling of activities unreliable. To circumvent these issues, we use an infrared illuminated test-bed to obtain a visually uniform input. We then utilize motion-history features which capture the subtle movements of a person within a pre-defined volume, and then form a group representation of the audience by a histogram of pair-wise correlations over a small-window of time. Using this group representation, we learn our movie rating classifier from crowd-sourced ratings collected by rottentomatoes.com and show our prediction capability on audiences from 30 movies across 250 subjects (> 50 hrs).
Resumo:
This project was a preliminary step towards the development of novel methods for early stage cancer diagnosis and treatment. Diagnostic imaging agents with high Raman signal enhancement were developed based on tailored assemblies of gold nanoparticles, which demonstrated potential for non-invasive detection from deep under the skin surface. Specifically designed polymers were employed to assemble gold nanoparticles into controlled morphologies including dimers, nanochains, nanoplates, globular and core-satellite nanostructures. Our findings suggest that the Raman enhancement is strongly dependent on assembly morphology and can be tuned to adapt to the requirements of the diagnostic agent.
Resumo:
This study explores the idea of video games where the players are not just allowed to express themselves creatively, but are challenged to do so and are judged based on the quality of their creative expression. The outcome of the research is a series of six games which comment on this idea. The study also raises further questions regarding how current video games are constructed and designed in comparison with non-computer games, and invites a further evolution of the craft of video game design in a direction that focuses more on interpreting and reacting to what the player is doing.
Resumo:
A single channel video projection with image, text and sound components. It was projected so as entirely fill a 3 x 3.5 wall in a 6 x 3.5 metre gallery space. The work deals with the role of humour and the fictocritical in exploring the relationship between politics and art.
Resumo:
Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.
Resumo:
This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.
Acceptability-based QoE management for user-centric mobile video delivery : a field study evaluation
Resumo:
Effective Quality of Experience (QoE) management for mobile video delivery – to optimize overall user experience while adapting to heterogeneous use contexts – is still a big challenge to date. This paper proposes a mobile video delivery system to emphasize the use of acceptability as the main indicator of QoE to manage the end-to-end factors in delivering mobile video services. The first contribution is a novel framework for user-centric mobile video system that is based on acceptability-based QoE (A-QoE) prediction models, which were derived from comprehensive subjective studies. The second contribution is results from a field study that evaluates the user experience of the proposed system during realistic usage circumstances, addressing the impacts of perceived video quality, loading speed, interest in content, viewing locations, network bandwidth, display devices, and different video coding approaches, including region-of-interest (ROI) enhancement and center zooming