931 resultados para Vermiculite. Carnauba wax. Hydrophobization. Adsorption. Oil
Resumo:
The tocopherol content of Brazil nut oil from different Amazon regions (Manicoré-AM, Rio Preto da Eva-AM, São João da Baliza-RR, Caroebe-RR, Belém-PA, and Xapurí-AC) was investigated by normal-phase high-performance liquid chromatography. For all authentic oils, two isomers: α- and γ-tocopherols were observed (37.92-74.48 µg g-1, 106.88-171.80 µg g-1, respectively), and their levels were relatively constant among the oils having these geographic origins, which would enable to distinguish Brazil nut oil from other plant oils for authentication purposes. Commercial Brazil nut oils were also evaluated, and some of these oils demonstrated a tocopherol content that was very different from that of the authentic oils. Therefore, we suggest that the tocopherol profile of Brazil nut oil can be useful chemical marker for quality control and authentication.
Resumo:
The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
Long pepper (Piper hispidinervum) is an Amazonian species of commercial interest due to the production of safrole. Drying long pepper biomass to extract safrole is a time consuming and costly process that can also result in the contamination of the material by microorganisms. The objective of this study was to analyze the yield of essential oil and safrole content of fresh and dried biomass of long pepper accessions maintained in the Active Germoplasm Bank of Embrapa Acre, in the state of Acre, Brazil, aiming at selecting genotypes with best performance on fresh biomass to recommend to the breeding program of the species. Yield of essential oil and safrole content were assessed in 15 long pepper accessions. The essential oil extraction was performed by hydrodistillation and analyzed by gas chromatography. A joint analysis of experiments was performed and the means of essential oil yield and safrole content for each biomass were compared by Student's t-test. There was variability in the essential oil yield and safrole content. There was no difference between the types of biomass for oil yield; however to the safrole content there was difference. Populations 9, 10, 12 and 15 had values of oil yield between 4.1 and 5.3%, and safrole content between 87.2 and 94.3%. The drying process does not interfere in oil productivity. These populations have potential for selection to the long pepper breeding program using oil extraction in the fresh biomass
Resumo:
ABSTRACTIn fish farmings, diseases can be reduced by using immunostimulants. The aim of this study was to evaluate the immunostimulant potential of Mentha piperita in tambaqui fed with 0, 0.5, 1.0 and 1.5% of oil per kg of commercial fish feed. The fish were inoculated with Aeromonas hydrophila to challenge them. Hematological and biochemical parameters were determined after 30 days of feeding and seven days after the challenge. There was no mortality and M. piperita oil did not influence fish production parameters. However, blood hemoglobin concentration (Hb) increased in the fish fed with 0.5 and 1.5% of oil per kg of diet; albumin increased in those fed with 1.0%; cholesterol increased in all groups with oil; and triglycerides increased in those fed with 0.5%. After the bacterial challenge, the fish showed decreases in Hb when fed with diet enriched with 1.5% oil per kg of diet, in mean corpuscular volume with 1.0% and in mean corpuscular hemoglobin concentration with 0 and 1.5%. Protein levels increased in groups with 0 and 1.5% of oil and albumin when fed with 0 and 1.0%; cholesterol levels increased in the control group; and high levels of triglycerides were observed in the groups with 0, 0.5 and 1.5%. Thus, M. piperita essential oil promoted hematological alterations in tambaqui and can be recommended in diets containing up to 1.0% per kg, because of the minimal physiological modifications caused. However, additional studies are necessary to obtain more information regarding to the physiological effects of this immunostimulant.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
[Excerpt] Anaerobic bioremediation is an important alternative for the common aerobic cleanup of subsurface petroleum-contaminated soil and water. Microbial communities involved in anaerobic oil biodegradation are scarcely studied, and only few mechanisms of anaerobic hydrocarbons degradation are described. In this work, microbial degradation of aliphatic hydrocarbons (AHC) was studied by using culture-dependent and culture-independent approaches. Hexadecane and hexadecene-degrading microbial communities were enriched under sulfate-reducing and methanogenic conditions. The microorganisms present in the enriched cultures were identified by 16S rRNA gene sequencing. (...)
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.
Resumo:
The developmental degree of the wax glands was compared in four Meliponini bees, that produce different quantities of wax. The histological data and height average of the wax epithelium during the time in which the maximum production of wax is expected, are in accordance with the rates of wax produced by the species. In Lestrimelitta limao (Smith, 1863) a species which has cleptobiotic habits, and frequently rob wax from the attacked colonies, the height of wax epithelium was the lowest among the studied species. The cells seem to show an abnormal vacuolated cytoplasm, in the phase in which they would be producing wax.
Resumo:
In this paper we use an energy-economy-environment computable general equilibrium (CGE) model of the Scottish economy to examine the impacts of an exogenous increase in energy augmenting technological progress in the domestic commercial Transport sector on the supply and use of energy. We focus our analysis on oil, as the main type of energy input used in commercial transport activity. We find that a 5% increase in energy efficiency in the commercial Transport sector leads to rebound effects in the use of oil-based energy commodities in all time periods, in the target sector and at the economy-wide level. However, our results also suggest that such an efficiency improvement may cause a contraction in capacity in the Scottish oil supply sector. This ‘disinvestment effect’ acts as a constraint on the size of rebound effects. However, the magnitude of rebound effects and presence of the disinvestment effect in the simulations conducted here are sensitive to the specification of key elasticities of substitution in the nested production function for the target sector, particularly the substitutability of energy for non-energy intermediate inputs to production.
Resumo:
The World Bank has published estimates of sustainability of consumption paths by adjusting saving rates to take account of the depletion of non-renewable resources. During the period of North Sea oil production Scotland has been in a fiscal union with the rest of the UK. The present paper adjusts the World Bank data to produce separate genuine saving estimates for Scotland and the rest of the UK for 1970-2009, based on a ‘derivation’ principle for oil revenues. The calculations indicate that Scotland has had a negative genuine saving rate for most of the period of exploitation of North Sea oil resources, with genuine saving being positive in the rest of the UK during this period.
Resumo:
The World Bank has published estimates of sustainability of consumption paths by adjusting saving rates to take account of the depletion of non-renewable resources. During the period of North Sea oil production Scotland has been in a fiscal union with the rest of the UK. The present paper adjusts the World Bank data to produce separate genuine saving estimates for Scotland and the rest of the UK for 1970-2009, based on a ‘derivation’ principle for oil revenues. The calculations indicate that Scotland has had a negative genuine saving rate for most of the period of exploitation of North Sea oil resources, with genuine saving being positive in the rest of the UK during this period.