912 resultados para Verificação de Assembly
Resumo:
OBJETIVO: Utilizar a cintilografia óssea facial para identificar o crescimento esquelético mandibular, através do metabolismo ósseo condilar de indivíduos com crescimento craniofacial equilibrado, e compará-lo à atividade condilar daqueles com crescimento mandibular excessivo. MATERIAIS E MÉTODOS: Quarenta e sete indivíduos, de ambos os sexos, entre 18 e 28 anos de idade, foram divididos em grupo controle - classe I (n = 13) - e grupo caso - classe III (n = 34). As imagens foram obtidas duas horas após injeção intravenosa de 200 µCi/kg de 99mTc-MDP. Foram realizadas incidências laterais do crânio e posterior da coluna lombar e a taxa de contagem foi determinada pela obtenção da média de contagem dos côndilos e da quarta vértebra lombar utilizando 300.000 contagens. RESULTADOS: Não foram encontradas captações condilares assimétricas em ambos os grupos, e apesar da ausência de significância estatística, os valores médios de captação condilar foram maiores no grupo caso. CONCLUSÃO: A média de captação aumentada indicou maior metabolismo ósseo condilar nos indivíduos classe III, sugerindo um provável crescimento mandibular residual. Mais estudos estão sendo realizados para aumentar esta amostragem.
Resumo:
OBJETIVO: Desenvolvimento e implementação de um programa, fundamentado no algoritmo de cálculo manual, para verificação dos cálculos de unidades monitoras em radioterapia e estabelecimento de patamares de aceitação, como mecanismo de garantia da qualidade. MATERIAIS E MÉTODOS: Os dados apresentados foram obtidos a partir dos aceleradores lineares modelo Clinac 600C e 2100C, da Varian, e o sistema de planejamento de tratamento computadorizado utilizado foi o CadPlan™. RESULTADOS: Para os feixes de 6 MV os patamares de aceitação para desvios entre os cálculos de unidades monitoras, separados por região de tratamento, foram: mama (0,0% ± 1,7%), cabeça e pescoço (1,5% ± 0,5%), hipófise (-1,7% ± 0,5%), pelve (2,1% ± 2,1%) e tórax (0,2% ± 1,3%). Para os feixes de 15 MV, o patamar sugerido para pelve em todas as técnicas de tratamento foi de (3,2% ± 1,3%). CONCLUSÃO: Os dados são suficientes para justificar seu uso na prática clínica como ferramenta no programa de garantia da qualidade.
Resumo:
Here we adopt a novel strategy to investigate phonological assembly. Participants performed a visual lexical decision task in English in which the letters in words and letterstrings were delivered either sequentially (promoting phonological assembly) or simultaneously (not promoting phonological assembly). A region of interest analysis confirmed that regions previously associated with phonological assembly, in studies contrasting different word types (e.g. words versus pseudowords), were also identified using our novel task that controls for a number of confounding variables. Specifically, the left pars opercularis, the superior part of the ventral precentral gyrus and the supramarginal gyrus were all recruited more during sequential delivery than simultaneous delivery, even when various psycholinguistic characteristics of the stimuli were controlled. This suggests that sequential delivery of orthographic stimuli is a useful tool to explore how readers, with various levels of proficiency, use sublexical phonological processing during visual word recognition.
Resumo:
The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.
Resumo:
The ¹H NMR data set of a series of 3-aryl (1,2,4)-oxadiazol-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA). Using the original ¹H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazol group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted.
Resumo:
This thesis examines and explains the procedure used to redesign the attachment of permanent magnets to the surface of the rotor of a synchronous generator. The methodology followed to go from the actual assembly to converge to the final purposed innovation was based on the systematic approach design. This meant that first a series of steps had to be predefined as a frame of reference later to be used to compare and select proposals, and finally to obtain the innovation that was sought. Firstly, a series of patents was used as the background for the upcoming ideas. To this end, several different patented assemblies had been found and categorized according the main element onto which this thesis if focused, meaning the attachment element or method. After establishing the technological frame of reference, a brainstorm was performed to obtain as many ideas as possible. Then these ideas were classified, regardless of their degree of complexity or usability, since at this time the quantity of the ideas was the important issue. Subsequently, they were compared and evaluated from different points of view. The comparison and evaluation in this case was based on the use of a requirement list, which established the main needs that the design had to fulfill. Then the selection could be done by grading each idea in accordance with these requirements. In this way, one was able to obtain the idea or ideas that best fulfilled these requirements. Once all of the ideas were compared and evaluated, the best or most suitable idea or ideas were separated. Finally, the selected idea or ideas was/were analyzed in extension and a number of improvements were made. Consequently, a final idea was refined and made more suitable at its performance, manufacture, and life cycle assessment. Therefore, in the end, the design process gave a solution to the problem pointed out at the beginning.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
Resumo:
Currently, the physiotherapists use the phonoforesis, which consists in the therapeutical ultrasound (US) used to increase the drug molecules migration through the skin, however, the US can shows oxidative effects, and is used, for example, in chemical reactions acceleration. The present study aimed to perform the electrochemical evaluation and the diffusion investigation of gel/caffeine 5% solutions submitted to therapeutical US (continuous mode, 1.0 W cm-2 and 1 MHz). It this study, it has been verified diffusion increase and a possible oxidation of the caffeine molecules, when subjected to therapeutical US.
Resumo:
A new Cu(II) trimers, [Cu3(dcp)2(H2O)8]. 4DMF, with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H3dcp) has been prepared by solvent method. Its solid-state structure has been characterized by elemental analysis, thermal analysis (TGA and DSC), and single crystal X-ray diffraction. X-ray crystallographic studies reveal that this complex has extended 1-D,2-D and 3-D supramolecular architectures directed by weak interactions (hydrogen bond and aromatic π-π stacking interaction) leading to a sandwich solid-state structure.
Resumo:
During mitotic cell division, the genetic material packed into chromosomes is divided equally between two daughter cells. Before the separation of the two copies of a chromosome (sister chromatids), each chromosome has to be properly connected with microtubules of the mitotic spindle apparatus and aligned to the centre of the cell. The spindle assembly checkpoint (SAC) monitors connections between microtubules and chromosomes as well as tension applied across the centromere. Microtubules connect to a chromosome via kinetochores, which are proteinaceous organelles assembled onto the centromeric region of the sister chromatids. Improper kinetochore-microtubule attachments activate the SAC and block chromosome segregation until errors are corrected and all chromosomes are connected to the mitotic spindle in a bipolar manner. The purpose of this surveillance mechanism is to prevent loss or gain of chromosomes in daughter cells that according to current understanding contributes to cancer formation. Numerous proteins participate in the regulation of mitotic progression. In this thesis, the mitotic tasks of three kinetochore proteins, Shugoshin 1 (Sgo1), INCENP, and p38 MAP kinase (p38 MAPK), were investigated. Sgo1 is a protector of centromeric cohesion. It is also described in the tension-sensing mechanism of the SAC and in the regulation of kinetochore-microtubule connections. Our results revealed a central role for Sgo1 in a novel branch of kinetochore assembly. INCENP constitutes part of the chromosomal passenger complex (CPC). The other members of the core complex are the Aurora B kinase, Survivin and Borealin. CPC is an important regulatory element of cell division having several roles at various stages of mitosis. Our results indicated that INCENP and Aurora B are highly dynamic proteins at the mitotic centromeres and suggested a new role for CPC in regulation of chromosome movements and spindle structure during late mitosis. The p38 MAPK has been implicated in G1 and G2 checkpoints during the cell cycle. However, its role in mitotic progression and control of SAC signaling has been controversial. In this thesis, we discovered a novel function for p38γ MAPK in chromosome orientation and spindle structure as well as in promotion of viability of mitotic cells.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
The spindle assembly checkpoint as a drug target - Novel small-molecule inhibitors of Aurora kinases
Resumo:
Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.