993 resultados para Vector-like Quark


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary objective: To investigate whether assessment method influences the type of post-concussion-like symptoms. Methods and procedures: Participants were 73 Australian undergraduate students (Mage = 24.14, SD = 8.84; 75.3% female) with no history of mild traumatic brain injury (mTBI). Participants reported symptoms experienced over the previous 2 weeks in response to an open-ended question (free report), mock interview and standardized checklist (British Columbia Post-concussion Symptom Inventory; BC-PSI). Main outcomes and results: In the free report and checklist conditions, cognitive symptoms were reported significantly less frequently than affective (free report: p < 0.001; checklist: p < 0.001) or somatic symptoms (free report: p < 0.001; checklist: p = 0.004). However, in the mock structured interview condition, cognitive and somatic symptoms were reported significantly less frequently than affective symptoms (both p < 0.001). No participants reported at least one symptom from all three domains when assessed by free report, whereas most participants did so when symptoms were assessed by a mock structured interview (75%) or checklist (90%). Conclusions: Previous studies have shown that the method used to assess symptoms affects the number reported. This study shows that the assessment method also affects the type of reported symptoms.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) and the related kallikrein family of serine proteases are current or emerging biomarkers for prostate cancer detection and progression. Kallikrein 4 (KLK4/hK4) is of particular interest, as KLK4 mRNA has been shown to be elevated in prostate cancer. In this study, we now show that the comparative expression of hK4 protein in prostate cancer tissues, compared with benign glands, is greater than that of PSA and kallikrein 2 (KLK2/hK2), suggesting that hK4 may play an important functional role in prostate cancer progression in addition to its biomarker potential. To examine the roles that hK4, as well as PSA and hK2, play in processes associated with progression, these kallikreins were separately transfected into the PC-3 prostate cancer cell line, and the consequence of their stable transfection was investigated. PC-3 cells expressing hK4 had a decreased growth rate, but no changes in cell proliferation were observed in the cells expressing PSA or hK2. hK4 and PSA, but not hK2, induced a 2.4-fold and 1.7-fold respective increase, in cellular migration, but not invasion, through Matrigel, a synthetic extracellular matrix. We hypothesised that this increase in motility displayed by the hK4 and PSA-expressing PC-3 cells may be related to the observed change in structure in these cells from a typical rounded epithelial-like cell to a spindle-shaped, more mesenchymal-like cell, with compromised adhesion to the culture surface. Thus, the expression of E-cadherin and vimentin, both associated with an epithelial-mesenchymal transition (EMT), was investigated. E-cadherin protein was lost and mRNA levels were significantly decreased in PC-3 cells expressing hK4 and PSA (10-fold and 7-fold respectively), suggesting transcriptional repression of E-cadherin, while the expression of vimentin was increased in these cells. The loss of E-cadherin and associated increase in vimentin are indicative of EMT and provides compelling evidence that hK4, in particular, and PSA have a functional role in the progression of prostate cancer through their promotion of tumour cell migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for calculating odome- try in three-dimensions for car-like ground ve- hicles with an Ackerman-like steering model. In our approach we use the information from a single camera to derive the odometry in the plane and fuse it with roll and pitch informa- tion derived from an on-board IMU to extend to three-dimensions, thus providing odometric altitude as well as traditional x and y transla- tion. We have mounted the odometry module on a standard Toyota Prado SUV and present results from a car-park environment as well as from an off-road track.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A coverage algorithm is an algorithm that deploys a strategy as to how to cover all points in terms of a given area using some set of sensors. In the past decades a lot of research has gone into development of coverage algorithms. Initially, the focus was coverage of structured and semi-structured indoor areas, but with time and development of better sensors and introduction of GPS, the focus has turned to outdoor coverage. Due to the unstructured nature of an outdoor environment, covering an outdoor area with all its obstacles and simultaneously performing reliable localization is a difficult task. In this paper, two path planning algorithms suitable for solving outdoor coverage tasks are introduced. The algorithms take into account the kinematic constraints of an under-actuated car-like vehicle, minimize trajectory curvatures, and dynamically avoid detected obstacles in the vicinity, all in real-time. We demonstrate the performance of the coverage algorithm in the field by achieving 95% coverage using an autonomous tractor mower without the aid of any absolute localization system or constraints on the physical boundaries of the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initial attempts to obtain lattice based signatures were closely related to reducing a vector modulo the fundamental parallelepiped of a secret basis (like GGH [9], or NTRUSign [12]). This approach leaked some information on the secret, namely the shape of the parallelepiped, which has been exploited on practical attacks [24]. NTRUSign was an extremely efficient scheme, and thus there has been a noticeable interest on developing countermeasures to the attacks, but with little success [6]. In [8] Gentry, Peikert and Vaikuntanathan proposed a randomized version of Babai’s nearest plane algorithm such that the distribution of a reduced vector modulo a secret parallelepiped only depended on the size of the base used. Using this algorithm and generating large, close to uniform, public keys they managed to get provably secure GGH-like lattice-based signatures. Recently, Stehlé and Steinfeld obtained a provably secure scheme very close to NTRUSign [26] (from a theoretical point of view). In this paper we present an alternative approach to seal the leak of NTRUSign. Instead of modifying the lattices and algorithms used, we do a classic leaky NTRUSign signature and hide it with gaussian noise using techniques present in Lyubashevky’s signatures. Our main contributions are thus a set of strong NTRUSign parameters, obtained by taking into account latest known attacks against the scheme, a statistical way to hide the leaky NTRU signature so that this particular instantiation of CVP-based signature scheme becomes zero-knowledge and secure against forgeries, based on the worst-case hardness of the O~(N1.5)-Shortest Independent Vector Problem over NTRU lattices. Finally, we give a set of concrete parameters to gauge the efficiency of the obtained signature scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Role congruity theory predicts prejudice towards women who meet the agentic requirements of the leader role. In line with recent findings indicating greater acceptance of agentic behaviour from women, we find evidence for a more subtle form of prejudice towards women who fail to display agency in leader roles. Using a classic methodology, the agency of male and female leaders was manipulated using assertive or tentative speech, presented through written (Study 1, N = 167) or verbal (Study 2, N = 66) communications. Consistent with predictions, assertive women were as likeable and influential as assertive men, while being tentative in leadership reduced the likeability and influence of women, but not of men. Although approval of agentic behaviour from women in leadership reflects progress, evidence that women are quickly singled out for disapproval if they fail to show agency is important for understanding how they continue to be at a distinct disadvantage to men in leader roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.