889 resultados para User-based sesign
Resumo:
Access control is a fundamental concern in any system that manages resources, e.g., operating systems, file systems, databases and communications systems. The problem we address is how to specify, enforce, and implement access control in distributed environments. This problem occurs in many applications such as management of distributed project resources, e-newspaper and payTV subscription services. Starting from an access relation between users and resources, we derive a user hierarchy, a resource hierarchy, and a unified hierarchy. The unified hierarchy is then used to specify the access relation in a way that is compact and that allows efficient queries. It is also used in cryptographic schemes that enforce the access relation. We introduce three specific cryptography based hierarchical schemes, which can effectively enforce and implement access control and are designed for distributed environments because they do not need the presence of a central authority (except perhaps for set- UP).
Resumo:
The ability to utilize information systems (IS) effectively is becoming a necessity for business professionals. However, individuals differ in their abilities to use IS effectively, with some achieving exceptional performance in IS use and others being unable to do so. Therefore, developing a set of skills and attributes to achieve IS user competency, or the ability to realize the fullest potential and the greatest performance from IS use, is important. Various constructs have been identified in the literature to describe IS users with regard to their intentions to use IS and their frequency of IS usage, but studies to describe the relevant characteristics associated with highly competent IS users, or those who have achieved IS user competency, are lacking. This research develops a model of IS user competency by using the Repertory Grid Technique to identify a broad set of characteristics of highly competent IS users. A qualitative analysis was carried out to identify categories and sub-categories of these characteristics. Then, based on the findings, a subset of the model of IS user competency focusing on the IS-specific factors – domain knowledge of and skills in IS, willingness to try and to explore IS, and perception of IS value – was developed and validated using the survey approach. The survey findings suggest that all three factors are relevant and important to IS user competency, with willingness to try and to explore IS being the most significant factor. This research generates a rich set of factors explaining IS user competency, such as perception of IS value. The results not only highlight characteristics that can be fostered in IS users to improve their performance with IS use, but also present research opportunities for IS training and potential hiring criteria for IS users in organizations.
Resumo:
This paper presents a performance analysis of a baseband multiple-input single-output ultra-wideband system over scenarios CM1 and CM3 of the IEEE 802.15.3a channel model, incorporating four different schemes of pre-distortion: time reversal, zero-forcing pre-equaliser, constrained least squares pre-equaliser, and minimum mean square error pre-equaliser. For the third case, a simple solution based on the steepest-descent (gradient) algorithm is adopted and compared with theoretical results. The channel estimations at the transmitter are assumed to be truncated and noisy. Results show that the constrained least squares algorithm has a good trade-off between intersymbol interference reduction and signal-to-noise ratio preservation, providing a performance comparable to the minimum mean square error method but with lower computational complexity. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Ubiquitous Computing promises seamless access to a wide range of applications and Internet based services from anywhere, at anytime, and using any device. In this scenario, new challenges for the practice of software development arise: Applications and services must keep a coherent behavior, a proper appearance, and must adapt to a plenty of contextual usage requirements and hardware aspects. Especially, due to its interactive nature, the interface content of Web applications must adapt to a large diversity of devices and contexts. In order to overcome such obstacles, this work introduces an innovative methodology for content adaptation of Web 2.0 interfaces. The basis of our work is to combine static adaption - the implementation of static Web interfaces; and dynamic adaptation - the alteration, during execution time, of static interfaces so as for adapting to different contexts of use. In hybrid fashion, our methodology benefits from the advantages of both adaptation strategies - static and dynamic. In this line, we designed and implemented UbiCon, a framework over which we tested our concepts through a case study and through a development experiment. Our results show that the hybrid methodology over UbiCon leads to broader and more accessible interfaces, and to faster and less costly software development. We believe that the UbiCon hybrid methodology can foster more efficient and accurate interface engineering in the industry and in the academy.
Resumo:
XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main modules for (i) discovering the structural commonalities between sub-trees, (ii) identifying sub-tree semantic resemblances, (iii) computing tree-based edit operations costs, and (iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance.
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
Resumo:
In this paper we discuss the problem of how to discriminate moments of interest on videos or live broadcast shows. The primary contribution is a system which allows users to personalize their programs with previously created media stickers-pieces of content that may be temporarily attached to the original video. We present the system's architecture and implementation, which offer users operators to transparently annotate videos while watching them. We offered a soccer fan the opportunity to add stickers to the video while watching a live match: the user reported both enjoying and being comfortable using the stickers during the match-relevant results even though the experience was not fully representative.
Resumo:
In this paper, we present a novel approach to perform similarity queries over medical images, maintaining the semantics of a given query posted by the user. Content-based image retrieval systems relying on relevance feedback techniques usually request the users to label relevant/irrelevant images. Thus, we present a highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The profiles maintain the settings desired for each user, allowing tuning of the similarity assessment, which encompasses the dynamic change of the distance function employed through an interactive process. Experiments on medical images show that the method is effective and can improve the decision making process during analysis.
Resumo:
Matita (that means pencil in Italian) is a new interactive theorem prover under development at the University of Bologna. When compared with state-of-the-art proof assistants, Matita presents both traditional and innovative aspects. The underlying calculus of the system, namely the Calculus of (Co)Inductive Constructions (CIC for short), is well-known and is used as the basis of another mainstream proof assistant—Coq—with which Matita is to some extent compatible. In the same spirit of several other systems, proof authoring is conducted by the user as a goal directed proof search, using a script for storing textual commands for the system. In the tradition of LCF, the proof language of Matita is procedural and relies on tactic and tacticals to proceed toward proof completion. The interaction paradigm offered to the user is based on the script management technique at the basis of the popularity of the Proof General generic interface for interactive theorem provers: while editing a script the user can move forth the execution point to deliver commands to the system, or back to retract (or “undo”) past commands. Matita has been developed from scratch in the past 8 years by several members of the Helm research group, this thesis author is one of such members. Matita is now a full-fledged proof assistant with a library of about 1.000 concepts. Several innovative solutions spun-off from this development effort. This thesis is about the design and implementation of some of those solutions, in particular those relevant for the topic of user interaction with theorem provers, and of which this thesis author was a major contributor. Joint work with other members of the research group is pointed out where needed. The main topics discussed in this thesis are briefly summarized below. Disambiguation. Most activities connected with interactive proving require the user to input mathematical formulae. Being mathematical notation ambiguous, parsing formulae typeset as mathematicians like to write down on paper is a challenging task; a challenge neglected by several theorem provers which usually prefer to fix an unambiguous input syntax. Exploiting features of the underlying calculus, Matita offers an efficient disambiguation engine which permit to type formulae in the familiar mathematical notation. Step-by-step tacticals. Tacticals are higher-order constructs used in proof scripts to combine tactics together. With tacticals scripts can be made shorter, readable, and more resilient to changes. Unfortunately they are de facto incompatible with state-of-the-art user interfaces based on script management. Such interfaces indeed do not permit to position the execution point inside complex tacticals, thus introducing a trade-off between the usefulness of structuring scripts and a tedious big step execution behavior during script replaying. In Matita we break this trade-off with tinycals: an alternative to a subset of LCF tacticals which can be evaluated in a more fine-grained manner. Extensible yet meaningful notation. Proof assistant users often face the need of creating new mathematical notation in order to ease the use of new concepts. The framework used in Matita for dealing with extensible notation both accounts for high quality bidimensional rendering of formulae (with the expressivity of MathMLPresentation) and provides meaningful notation, where presentational fragments are kept synchronized with semantic representation of terms. Using our approach interoperability with other systems can be achieved at the content level, and direct manipulation of formulae acting on their rendered forms is possible too. Publish/subscribe hints. Automation plays an important role in interactive proving as users like to delegate tedious proving sub-tasks to decision procedures or external reasoners. Exploiting the Web-friendliness of Matita we experimented with a broker and a network of web services (called tutors) which can try independently to complete open sub-goals of a proof, currently being authored in Matita. The user receives hints from the tutors on how to complete sub-goals and can interactively or automatically apply them to the current proof. Another innovative aspect of Matita, only marginally touched by this thesis, is the embedded content-based search engine Whelp which is exploited to various ends, from automatic theorem proving to avoiding duplicate work for the user. We also discuss the (potential) reusability in other systems of the widgets presented in this thesis and how we envisage the evolution of user interfaces for interactive theorem provers in the Web 2.0 era.
Resumo:
Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
[EN]This paper describes a low-cost system that allows the user to visualize different glasses models in live video. The user can also move the glasses to adjust its position on the face. The system, which runs at 9.5 frames/s on general-purpose hardware, has a homeostatic module that keeps image parameters controlled. This is achieved by using a camera with motorized zoom, iris, white balance, etc. This feature can be specially useful in environments with changing illumination and shadows, like in an optical shop. The system also includes a face and eye detection module and a glasses management module.
Resumo:
This work has been realized by the author in his PhD course in Electronics, Computer Science and Telecommunication at the University of Bologna, Faculty of Engineering, Italy. The subject of this thesis regards important channel estimation aspects in wideband wireless communication systems, such as echo cancellation in digital video broadcasting systems and pilot aided channel estimation through an innovative pilot design in Multi-Cell Multi-User MIMO-OFDM network. All the documentation here reported is a summary of years of work, under the supervision of Prof. Oreste Andrisano, coordinator of Wireless Communication Laboratory - WiLab, in Bologna. All the instrumentation that has been used for the characterization of the telecommunication systems belongs to CNR (National Research Council), CNIT (Italian Inter-University Center), and DEIS (Dept. of Electronics, Computer Science, and Systems). From November 2009 to May 2010, the author spent his time abroad, working in collaboration with DOCOMO - Communications Laboratories Europe GmbH (DOCOMO Euro-Labs) in Munich, Germany, in the Wireless Technologies Research Group. Some important scientific papers, submitted and/or published on IEEE journals and conferences have been produced by the author.
Resumo:
The central objective of research in Information Retrieval (IR) is to discover new techniques to retrieve relevant information in order to satisfy an Information Need. The Information Need is satisfied when relevant information can be provided to the user. In IR, relevance is a fundamental concept which has changed over time, from popular to personal, i.e., what was considered relevant before was information for the whole population, but what is considered relevant now is specific information for each user. Hence, there is a need to connect the behavior of the system to the condition of a particular person and his social context; thereby an interdisciplinary sector called Human-Centered Computing was born. For the modern search engine, the information extracted for the individual user is crucial. According to the Personalized Search (PS), two different techniques are necessary to personalize a search: contextualization (interconnected conditions that occur in an activity), and individualization (characteristics that distinguish an individual). This movement of focus to the individual's need undermines the rigid linearity of the classical model overtaken the ``berry picking'' model which explains that the terms change thanks to the informational feedback received from the search activity introducing the concept of evolution of search terms. The development of Information Foraging theory, which observed the correlations between animal foraging and human information foraging, also contributed to this transformation through attempts to optimize the cost-benefit ratio. This thesis arose from the need to satisfy human individuality when searching for information, and it develops a synergistic collaboration between the frontiers of technological innovation and the recent advances in IR. The search method developed exploits what is relevant for the user by changing radically the way in which an Information Need is expressed, because now it is expressed through the generation of the query and its own context. As a matter of fact the method was born under the pretense to improve the quality of search by rewriting the query based on the contexts automatically generated from a local knowledge base. Furthermore, the idea of optimizing each IR system has led to develop it as a middleware of interaction between the user and the IR system. Thereby the system has just two possible actions: rewriting the query, and reordering the result. Equivalent actions to the approach was described from the PS that generally exploits information derived from analysis of user behavior, while the proposed approach exploits knowledge provided by the user. The thesis went further to generate a novel method for an assessment procedure, according to the "Cranfield paradigm", in order to evaluate this type of IR systems. The results achieved are interesting considering both the effectiveness achieved and the innovative approach undertaken together with the several applications inspired using a local knowledge base.
Resumo:
Biomedical analyses are becoming increasingly complex, with respect to both the type of the data to be produced and the procedures to be executed. This trend is expected to continue in the future. The development of information and protocol management systems that can sustain this challenge is therefore becoming an essential enabling factor for all actors in the field. The use of custom-built solutions that require the biology domain expert to acquire or procure software engineering expertise in the development of the laboratory infrastructure is not fully satisfactory because it incurs undesirable mutual knowledge dependencies between the two camps. We propose instead an infrastructure concept that enables the domain experts to express laboratory protocols using proper domain knowledge, free from the incidence and mediation of the software implementation artefacts. In the system that we propose this is made possible by basing the modelling language on an authoritative domain specific ontology and then using modern model-driven architecture technology to transform the user models in software artefacts ready for execution in a multi-agent based execution platform specialized for biomedical laboratories.