972 resultados para User classification
Resumo:
The user guide describes how to undertake an assessment using the nursing needs assessment tool.
Resumo:
INTRODUCTION: PFAPA syndrome is characterized by periodic fever, associated with pharyngitis, cervical adenitis and/or aphthous stomatitis and belongs to the auto-inflammatory diseases. Diagnostic criteria are based on clinical features and the exclusion of other periodic fever syndromes. An analysis of a large cohort of patients has shown weaknesses for these criteria and there is a lack of international consensus. An International Conference was held in Morges in November 2008 to propose a new set of classification criteria based on a consensus among experts in the field.OBJECTIVE: We aimed to verify the applicability of the new set of classification criteria.PATIENTS & METHODS: 80 patients diagnosed with PFAPA syndrome from 3 centers (Genoa, Lausanne and Geneva) for pediatric rheumatology were included in the study. A detailed description of the clinical and laboratory features was obtained. The new classification criteria and the actual diagnostic criteria were applied to the patients.RESULTS: Only 40/80 patients (50%) fulfilled all criteria of the new classification. 31 patients were excluded because they didn't meet one of the 7 diagnostic criteria, 7 because of 2 criteria, and one because of 3 criteria. When we applied the current criteria to the same patients, 11/80 patients (13.7%) needed to be excluded. 8/80 patients (10%) were excluded from both sets. Exclusion was related only to some of the criteria. Number of patients for each not fulfilled criterion (new set of criteria/actual criteria): age (1/6), symptoms between episodes (2/2), delayed growth (4/1), main symptoms (21/0), periodicity, length of fever, interval between episodes, and length of disease (20/0). The application of some of the new criteria was not easy, as they were both very restrictive and needed precise information from the patients.CONCLUSION: Our work has shown that the new set of classification criteria can be applied to patients suspected for PFAPA syndrome, but it seems to be more restrictive than the actual diagnostic criteria. A further work of validation needs to be done in order to determine if this new set of classification criteria allow a good discrimination between PFAPA patients and other causes of recurrent fever syndromes.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
An active learning method is proposed for the semi-automatic selection of training sets in remote sensing image classification. The method adds iteratively to the current training set the unlabeled pixels for which the prediction of an ensemble of classifiers based on bagged training sets show maximum entropy. This way, the algorithm selects the pixels that are the most uncertain and that will improve the model if added in the training set. The user is asked to label such pixels at each iteration. Experiments using support vector machines (SVM) on an 8 classes QuickBird image show the excellent performances of the methods, that equals accuracies of both a model trained with ten times more pixels and a model whose training set has been built using a state-of-the-art SVM specific active learning method
Resumo:
Customer Experience Management (CEM) se ha convertido en un factor clave para el éxito de las empresas. CEM gestiona todas las experiencias que un cliente tiene con un proveedor de servicios o productos. Es muy importante saber como se siente un cliente en cada contacto y entonces poder sugerir automáticamente la próxima tarea a realizar, simplificando tareas realizadas por personas. En este proyecto se desarrolla una solución para evaluar experiencias. Primero se crean servicios web que clasifican experiencias en estados emocionales dependiendo del nivel de satisfacción, interés, … Esto es realizado a través de minería de textos. Se procesa y clasifica información no estructurada (documentos de texto) que representan o describen las experiencias. Se utilizan métodos de aprendizaje supervisado. Esta parte es desarrollada con una arquitectura orientada a servicios (SOA) para asegurar el uso de estándares y que los servicios sean accesibles por cualquier aplicación. Estos servicios son desplegados en un servidor de aplicaciones. En la segunda parte se desarrolla dos aplicaciones basadas en casos reales. En esta fase Cloud computing es clave. Se utiliza una plataforma de desarrollo en línea para crear toda la aplicación incluyendo tablas, objetos, lógica de negocio e interfaces de usuario. Finalmente los servicios de clasificación son integrados a la plataforma asegurando que las experiencias son evaluadas y que las tareas de seguimiento son automáticamente creadas.
Resumo:
AbstractDigitalization gives to the Internet the power by allowing several virtual representations of reality, including that of identity. We leave an increasingly digital footprint in cyberspace and this situation puts our identity at high risks. Privacy is a right and fundamental social value that could play a key role as a medium to secure digital identities. Identity functionality is increasingly delivered as sets of services, rather than monolithic applications. So, an identity layer in which identity and privacy management services are loosely coupled, publicly hosted and available to on-demand calls could be more realistic and an acceptable situation. Identity and privacy should be interoperable and distributed through the adoption of service-orientation and implementation based on open standards (technical interoperability). Ihe objective of this project is to provide a way to implement interoperable user-centric digital identity-related privacy to respond to the need of distributed nature of federated identity systems. It is recognized that technical initiatives, emerging standards and protocols are not enough to guarantee resolution for the concerns surrounding a multi-facets and complex issue of identity and privacy. For this reason they should be apprehended within a global perspective through an integrated and a multidisciplinary approach. The approach dictates that privacy law, policies, regulations and technologies are to be crafted together from the start, rather than attaching it to digital identity after the fact. Thus, we draw Digital Identity-Related Privacy (DigldeRP) requirements from global, domestic and business-specific privacy policies. The requirements take shape of business interoperability. We suggest a layered implementation framework (DigldeRP framework) in accordance to model-driven architecture (MDA) approach that would help organizations' security team to turn business interoperability into technical interoperability in the form of a set of services that could accommodate Service-Oriented Architecture (SOA): Privacy-as-a-set-of- services (PaaSS) system. DigldeRP Framework will serve as a basis for vital understanding between business management and technical managers on digital identity related privacy initiatives. The layered DigldeRP framework presents five practical layers as an ordered sequence as a basis of DigldeRP project roadmap, however, in practice, there is an iterative process to assure that each layer supports effectively and enforces requirements of the adjacent ones. Each layer is composed by a set of blocks, which determine a roadmap that security team could follow to successfully implement PaaSS. Several blocks' descriptions are based on OMG SoaML modeling language and BPMN processes description. We identified, designed and implemented seven services that form PaaSS and described their consumption. PaaSS Java QEE project), WSDL, and XSD codes are given and explained.
Resumo:
The application of support vector machine classification (SVM) to combined information from magnetic resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has been shown to improve detection and differentiation of Alzheimer's disease dementia (AD) and frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28 AD patients and 28 healthy control subjects from the database provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest information from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating dementia syndromes revealed a higher discrimination accuracy in comparison to single modality classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100% were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis.
Resumo:
Portal hypertension is a frequent complication of chronic liver disease, detected not only in schistosomiasis, but also in cirrhosis of any etiology. Vascular alterations in the colonic mucosa are a potential source for acute or chronic bleeding and have been observed in patients with portal hypertension. The purpose of this prospective study was to describe and propose a classification for the vascular alterations of portal hypertension in the colonic mucosa among patients with hepatosplenic schistosomiasis mansoni. One or more alterations of portal colopathy were observed in all patients and they were classified according to their intensity, obeying the classification proposed by the authors. Portal colopathy is an important finding in hepatosplenic schistosomiasis and might be the cause of lower gastrointestinal bleeding in patients with severe portal hypertension.
Resumo:
Epoetin-delta (Dynepo Shire Pharmaceuticals, Basing stoke, UK) is a synthetic form of erythropoietin (EPO) whose resemblance with endogenous EPO makes it hard to identify using the classical identification criteria. Urine samples collected from six healthy volunteers treated with epoetin-delta injections and from a control population were immuno-purified and analyzed with the usual IEF method. On the basis of the EPO profiles integration, a linear multivariate model was computed for discriminant analysis. For each sample, a pattern classification algorithm returned a bands distribution and intensity score (bands intensity score) saying how representative this sample is of one of the two classes, positive or negative. Effort profiles were also integrated in the model. The method yielded a good sensitivity versus specificity relation and was used to determine the detection window of the molecule following multiple injections. The bands intensity score, which can be generalized to epoetin-alpha and epoetin-beta, is proposed as an alternative criterion and a supplementary evidence for the identification of EPO abuse.
Resumo:
BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.
Resumo:
Genetic disorders involving the skeletal system arise through disturbances in the complex processes of skeletal development, growth and homeostasis and remain a diagnostic challenge because of their variety. The Nosology and Classification of Genetic Skeletal Disorders provides an overview of recognized diagnostic entities and groups them by clinical and radiographic features and molecular pathogenesis. The aim is to provide the Genetics, Pediatrics and Radiology community with a list of recognized genetic skeletal disorders that can be of help in the diagnosis of individual cases, in the delineation of novel disorders, and in building bridges between clinicians and scientists interested in skeletal biology. In the 2010 revision, 456 conditions were included and placed in 40 groups defined by molecular, biochemical, and/or radiographic criteria. Of these conditions, 316 were associated with mutations in one or more of 226 different genes, ranging from common, recurrent mutations to "private" found in single families or individuals. Thus, the Nosology is a hybrid between a list of clinically defined disorders, waiting for molecular clarification, and an annotated database documenting the phenotypic spectrum produced by mutations in a given gene. The Nosology should be useful for the diagnosis of patients with genetic skeletal diseases, particularly in view of the information flood expected with the novel sequencing technologies; in the delineation of clinical entities and novel disorders, by providing an overview of established nosologic entities; and for scientists looking for the clinical correlates of genes, proteins and pathways involved in skeletal biology. © 2011 Wiley-Liss, Inc.
Resumo:
Classification and selection of ethnic disparity health indicators in New Zealand