854 resultados para Underwater exploration.
Resumo:
The present status and future prospects of functional information materials, mainly focusing on semiconductor microstructural materials, are introduced first in this paper. Then a brief discussion how to enhance the academic level and innovation capability of research and development of functional information materials in China are made. Finally the main problems concerning the studies of materials science and technology are analyzed, and possible measures for promoting its development are proposed.
Resumo:
A surface-region-purification-induced p-n junction, a puzzle discovered at Brookhaven National Laboratory, in a silicon-on-defect-layer (SODL) material has been explored by carrying out various annealing conditions and subsequent measurements on electrical properties. The origin of the pn junction has been experimentally investigated. Furthermore, the p-n junction has been transformed into a p-i-n electrical structure by adding a high temperature annealing process to the previously used SODL procedure, making the SODL material approach silicon on insulator (SOI). The control of the initial oxygen amount in the silicon material is suggested to be critical for the experimental results.
Resumo:
The present status and future prospects of functional information materials, mainly focusing on semiconductor microstructural materials, are introduced first in this paper. Then a brief discussion how to enhance the academic level and innovation capability of research and development of functional information materials in China are made. Finally the main problems concerning the studies of materials science and technology are analyzed, and possible measures for promoting its development are proposed.
Resumo:
This paper describes an experimental study on the oscillation flow characteristics of submerged supersonic gas jets issued from Laval nozzles. The flow pattern during the jet development and the jet expansion feedback phenomenon are studied using a high-speed camera and a pressure measurement system. The experimental results indicate that along the downstream distance, the jet has three flow regimes: (1) momentum jet; (2) buoyant jet; (3) plume. In the region near the nozzle exit a so-called bulge phenomenon is found. Bulging of the jet occurs many times before the more violent jet expansion feedback occurs. During the feedback process, the jet diameter can become several times that of the original one depending on the jet Mach number. The frequencies of the jet bulging and the jet expansion feedback are measured.
Resumo:
An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full-and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.
Resumo:
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
Resumo:
We investigate the role of two-quasiparticle isomeric states along the proton drip line, using configuration-constrained potential-energy-surface calculations. In contrast to even-even nuclei, odd-odd nuclei can have coexisting low-lying two-quasiparticle states. The low excitation energy and high angular momentum can lead to long-lived isomers. Also, because of the hindrance by spin selection, the probabilities of beta and proton decays from high-spin isomers can be reduced significantly. The present calculations reproduce reasonably well the available data for observed isomers in such nuclei. Unobserved high-spin isomers are predicted, which could be useful for future experimental studies of exotic nuclei at and beyond the proton drip line.
Resumo:
Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM)+ data have been successfully employed in the field of mineral exploration to identify key minerals over arid and semi-arid terrains. However, redundant vegetation and cloud may seriously interfere with the discrimination of the minerals with diagnostic features. Therefore, in this study, we use masking technique to eliminate the negative influence of vegetation and cloud and Crosta technique to identify the diagnostic features of hydroxyl-minerals, carbonate-minerals and iron oxides. Then the anomalies were endowed with special colours and overlapped with the remote-sensing and geochemical data, overlaying images as remote-sensing anomalies. The mineral exploration work was carried through by synthetic analysis of the remote-sensing images, geochemical data and structures. Finally, areas with high correlation between the occurrence of hydrothermal alteration and presence of main faults and geochemical anomalies were considered as mineral exploration targets worthy of further detailed exploration programmes.
Resumo:
Nanocrystals of Ag, PbSe, and PbTe were prepared via a high-temperature organic solution approach, respectively. Using a size-selection technique, the size-distribution of each set of nanocrystals could be fine-tuned and finally monodisperse products were achieved. Superlattice structure of binary self-assemblies in low size-ratio were also explored and characterized by transmission electron microscopy. It is realized that a success of achieving binary self-assembly pattern is greatly dependent on several key factors including particle size-distributions, relative concentrations of both components, as well as the size-ratios between Ag and PbSe (or PbTe) nanocrystals.
Resumo:
Irradiated polyamide-1010 (PA1010) with and without heat treatment after gamma-ray irradiation was compared by wide angle x-ray diffraction (WAXD), differential scanning calorimeter (DSC) and the determination of gel fractions. The results indicate that post radiation effects due to post radiation crosslinking and scissions affect physical properties. Post radiation effects restrain the formation and perfection of the planes (010), and make the crystals imperfect. Post radiation effects change the crystalline structures of polyamide-1010.