948 resultados para Ultrafine Particles, Laser Printer, Indoor Air Quality, Aerosol Formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the first oil crisis in 1974, economic reasons placed energy saving among the top priorities in most industrialised countries. In the decades that followed, another, equally strong driver for energy saving emerged: climate change caused by anthropogenic emissions, a large fraction of which result from energy generation. Intrinsically linked to energy consumption and its related emissions is another problem: indoor air quality. City dwellers in industrialised nations spend over 90% of their time indoors and exposure to indoor pollutants contributes to ~2.6% of global burden of disease and nearly 2 million premature deaths per year1. Changing climate conditions, together with human expectations of comfortable thermal conditions, elevates building energy requirements for heating, cooling, lighting and the use of other electrical equipment. We believe that these changes elicit a need to understand the nexus between energy consumption and its consequent impact on indoor air quality in urban buildings. In our opinion the key questions are how energy consumption is distributed between different building services, and how the resulting pollution affects indoor air quality. The energy-pollution nexus has clearly been identified in qualitative terms; however the quantification of such a nexus to derive emissions or concentrations per unit energy consumption is still weak, inconclusive and requires forward thinking. Of course, various aspects of energy consumption and indoor air quality have been studied in detail separately, but in-depth, integrated studies of the energy-pollution nexus are hard to come by. We argue that such studies could be instrumental in providing sustainable solutions to maintain the trade-off between the energy efficiency of buildings and acceptable levels of air pollution for healthy living.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efforts to reduce carbon emissions in the buildings sector have been focused on encouraging green design, construction and building operation; however, the business case is not very compelling if considering the energy cost savings alone. In recent years green building has been driven by a sense that it will improve the productivity of occupants,i something with much greater economic returns than energy savings. Reducing energy demand in green commercial buildings in a way that encourages greater productivity is not yet well understood as it involves a set of complex and interdependent factors. This paper outlines an investigation into these factors and focuses on better understanding the performance of and interaction between: design elements, internal environmental quality, occupant experience, tenant/leasing agreements, and building regulation and management. In doing so the paper presents a framework for improving energy efficiency in existing commercial buildings by considering a range of interconnected and synergistic elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cities, people spend a significant portion of their time indoors, much of which is in office buildings. The quality and nature of these spaces have the potential to be a strong determinant of people’s health and wellbeing. There is a body of evidence that suggests experiences of nature increase the rate of attention recovery, reduce stress, depression and anxiety, and increase cognitive abilities. Further, the presence of nature inside buildings (such as pot plants and internal green walls) can improve indoor air quality, potentially reducing illness and increasing cognitive function. Urban design that integrates nature into the built environment to provide these benefits, among others, is called ‘biophilic urbanism’ and is the subject of growing international interest and research. The potential for these benefits to increase worker productivity in office buildings is of particular interest, as this could significantly increase the financial performance of office building-based organisations. However, productivity is a complex concept that is difficult to define, and affected by a multitude of factors, which make it difficult to measure. This inability to quantify productivity increases from investments in nature- experiences in office buildings is currently a significant barrier to such investments. Within this context, this paper considers opportunities for research to explore the relationship between office-based nature experiences and productivity, by reviewing existing research in this field and reflecting on the authors’ own experiences. This review has a particular focus on the importance of quantifying this link in order to encourage private property owners to voluntarily integrate nature into buildings to provide city-wide ecosystem service benefits. The paper begins with a contextual overview of how biophilic urbanism can potentially increase worker productivity. Existing methods of measuring and evaluating the performance of biophilic urbanism within the context of office buildings are then explored, along with a discussion of issues with such methods that are currently limiting investment in biophilic urbanism to increase worker productivity and wellbeing. This includes a summary of a survey within a Perth office building to explore the impact of views of nature through a window. Drawing on these insights, the paper makes recommendations regarding opportunities for focusing future investigations to enhance understanding of how biophilic urbanism can contribute to increased wellbeing and productivity in office buildings. This paper builds on work conducted as part of the Sustainable Built Environment National Research Centre Project 1.5, Harnessing the Potential of Biophilic Urbanism in Australia, which considered the role of nature integrated into the built environment in responding to emerging challenges of climate change, resource shortages and population pressures, while providing a host of co- benefits to a range of stakeholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cities, people spend a significant portion of their time indoors, much of which is in office buildings. The quality and nature of these spaces have the potential to be a strong determinant of people’s health and wellbeing. There is a body of evidence that suggests experiences of nature increase the rate of attention recovery, reduce stress, depression and anxiety, and increase cognitive abilities. Further, the presence of nature inside buildings (such as pot plants and internal green walls) can improve indoor air quality, potentially reducing illness and increasing cognitive function. Urban design that integrates nature into the built environment to provide these benefits, among others, is called ‘biophilic urbanism’ and is the subject of growing international interest and research. The potential for these benefits to increase worker productivity in office buildings is of particular interest, as this could significantly increase the financial performance of office building-based organisations. However, productivity is a complex concept that is difficult to define, and affected by a multitude of factors, which make it difficult to measure. This inability to quantify productivity increases from investments in nature- experiences in office buildings is currently a significant barrier to such investments. Within this context, this paper considers opportunities for research to explore the relationship between office-based nature experiences and productivity, by reviewing existing research in this field and reflecting on the authors’ own experiences. This review has a particular focus on the importance of quantifying this link in order to encourage private property owners to voluntarily integrate nature into buildings to provide city-wide ecosystem service benefits. The paper begins with a contextual overview of how biophilic urbanism can potentially increase worker productivity. Existing methods of measuring and evaluating the performance of biophilic urbanism within the context of office buildings are then explored, along with a discussion of issues with such methods that are currently limiting investment in biophilic urbanism to increase worker productivity and wellbeing. This includes a summary of a survey within a Perth office building to explore the impact of views of nature through a window. Drawing on these insights, the paper makes recommendations regarding opportunities for focusing future investigations to enhance understanding of how biophilic urbanism can contribute to increased wellbeing and productivity in office buildings. This paper builds on work conducted as part of the Sustainable Built Environment National Research Centre Project 1.5, Harnessing the Potential of Biophilic Urbanism in Australia, which considered the role of nature integrated into the built environment in responding to emerging challenges of climate change, resource shortages and population pressures, while providing a host of co- benefits to a range of stakeholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secondary organic aerosol (SOA) is produced in the atmosphere by oxidation of volatile organic compounds. Laboratory chambers are used understand the formation mechanisms and evolution of SOA formed under controlled conditions. This thesis presents studies of SOA formed from anthropogenic and biogenic precursors and discusses the effects of chamber walls on suspended vapors and particles.

During a chamber experiment, suspended vapors and particles can interact with the chamber walls. Particle wall loss is relatively well-understood, but vapor wall losses have received little study. Vapor wall loss of 2,3-epoxy-1,4-butanediol (BEPOX) and glyoxal was identified, quantified, and found to depend on chamber age and relative humidity.

Particles reside in the atmosphere for a week or more and can evolve chemically during that time period, a process termed aging. Simulating aging in laboratory chambers has proven to be challenging. A protocol was developed to extend the duration of a chamber experiment to 36 h of oxidation and was used to evaluate aging of SOA produced from m-xylene. Total SOA mass concentration increased and then decreased with increasing photooxidation suggesting a transition from functionalization to fragmentation chemistry driven by photochemical processes. SOA oxidation, measured as the bulk particle elemental oxygen-to-carbon ratio and fraction of organic mass at m/z 44, increased continuously starting after 5 h of photooxidation.

The physical state and chemical composition of an organic aerosol affect the mixing of aerosol components and its interactions with condensing species. A laboratory chamber protocol was developed to evaluate the mixing of SOA produced sequentially from two different sources by heating the chamber to induce particle evaporation. Using this protocol, SOA produced from toluene was found to be less volatile than that produced from a-pinene. When the two types of SOA were formed sequentially, the evaporation behavior most closely represented that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA particles resembles a core of SOA from the first precursor coated by a layer of SOA from the second precursor, indicative of limiting mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A qualidade do ar é um importante indicador de saúde ambiental, sendo o seu monitoramento contínuo necessário. Apesar da relevância do tema, há muitos países em que os limites de exposição para agentes biológicos ainda não foram estabelecidos ou foram definidos de forma inadequada, podendo comprometer a qualidade ambiental. Os ambientes hospitalares, assim como as salas de necropsia podem apresentar problemas de contaminação do ar por agentes microbiológicos, necessitando de monitoramento contínuo a fim de evitar a ocorrência de doenças nos trabalhadores e na população em geral. Este estudo realizou a avaliação microbiológica do ar em hospitais públicos e IMLs da região metropolitana do Rio de Janeiro em salas cirúrgicas e de necropsia. A pesquisa exploratória e descritiva baseou-se em levantamento bibliográfico e investigação de campo, através de estudos de casos. Os dados foram obtidos por meio de entrevistas e observação direta nos locais de trabalho, onde foram realizadas as avaliações microbiológicas do ar. As variações em salas cirúrgicas para bactérias e fungos foram respectivamente de 14,99 ufc/m3 88,29 ufc/m3 e de 45,93 ufc/m3 - 742,09 ufc/m3. Já nas salas de necropsia os valores para bactérias e fungos variaram respectivamente de 18,96 ufc/m3 54,9 ufc/m3 e de 144,87 ufc/m3 - 1152,01 ufc/m3. Foram identificados tanto no ambiente cirúrgico como nas salas de necropsia a presença dos seguintes fungos: Aspergillus sp., Neurospora sp., Penicillium sp., Fusarium sp., Cladosporium sp., Curvularia sp., e Trichoderma sp. Já em relação às bactérias foram identificadas as presenças de Staphilococcus sp., Streptococcus sp. e Micrococcus sp. Foram traçadas recomendações para melhoria da qualidade ambiental e do ar. Os resultados indicaram que os valores são elevados quando comparados com as recomendações das normas internacionais. Foram encontrados valores inferiores aos sugeridos pela CP n. 109 da ANVISA. A presença de microrganismos patogênicos sugere adoção de medidas de controle ambiental. O estudo apontou a necessidade urgente do estabelecimento de valores de referência para ambientes hospitalares no Brasil a fim de garantir condições seguras que não venham a comprometer a saúde dos pacientes e profissionais de saúde envolvidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compostos carbonílicos representam uma das principais classes de poluentes atmosféricos e são frequentemente reportados em estudos de poluição atmosférica de interiores. São emitidos para a atmosfera a partir de uma variedade de fontes naturais e antropogênicas. Em projeto empreendido em 2011 pela Secretaria de Estado de Educação do Estado do Rio de Janeiro,foi implementada a climatização em todas as salas de aula de todas as escolas da rede pública estadual. A escala de exposição de ocupantes à climatização, em salas de aula, não apresenta precedentes em nosso estado e representa uma tendência de todo o país. Como é um projeto recente, não há dados a respeito da qualidade do ar interior nesses ambientes e, portanto, das consequências na saúde dos ocupantes. Os procedimentos foram baseados na metodologia TO-11A da U.S.EPA. A técnica de amostragem foi por via seca com reação química, empregando-se cartuchos de sílica revestidos de octadecil (SiO2-C18) impregnados com 2,4-dinitrofenilhidrazina. As carbonilas foram analisados através de Cromatografia Líquida de Alta Eficiência com detecção por UV. Foram encontradas concentrações de formaldeído na faixa de 3,59 a 26,62 μg m-3 (interior) e 0,74 a 23,47 μg m-3 (exterior), acetaldeído na faixa de 0,19 a 259,47 μg m-3 (interior) e 1,19 a 127,51 μg m-3 (exterior), acetona+acroleína na faixa de 0,00 a 48,45 μg m-3 (interior) e 0,00 a 37,00 μg m-3 (exterior). Os valores encontrados geralmente não ultrapassaram os limites determinados por organismos internacionais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do Grau de Mestre em Engenharia e Gestão Ambiental, ramo de Sistemas Industriais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
– Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation.

Design/methodology/approach
– The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use.

Findings
– The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system.

Practical implications
– The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ.

Originality/value
– IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aposta na sustentabilidade tem conduzido o mercado da construção a procurar novas soluções técnicas e novos materiais, que por serem mais eficientes, conseguem dar resposta aos requisitos cada vez mais exigentes deste sector. A aplicação dos conceitos de sustentabilidade não se pode restringir a novas construções, tendo que prever também as renovações e a reabilitação de edifícios antigos. Assim, novos materiais que sejam desenvolvidos, devem contemplar todas estas vertentes de utilização. Neste trabalho desenvolveram-se argamassas com novas funcionalidades, que contribuem para melhorar os níveis de sustentabilidade dos edifícios, através da incorporação de nanomateriais para armazenamento de calor latente e degradação de poluentes do ar interior. Estudou-se não só o impacto da incorporação destas nanopartículas no estado fresco e endurecido, mas também o seu desempenho do ponto de vista funcional quando integrados na estrutura da argamassa. É possível obter argamassas com capacidade para armazenar calor latente através da incorporação de um material de mudança de fase. Este material constituído por uma mistura de parafinas, consegue armazenar calor e libertálo posteriormente. As composições desenvolvidas podem ser aplicadas em novos projectos ou na reabilitação de edifícios contribuindo para reduzir o consumo energético, melhorando o conforto térmico no interior. Com a redução da factura energética obtém-se uma efectiva diminuição do impacto ambiental, energético e económico do edifício. Para além do armazenamento de calor latente, também se desenvolveram argamassas capazes de eliminar poluentes do ar interior e, simultaneamente, com capacidade de auto-limpeza. Utilizaram-se nanopartículas de dióxido de titânio como aditivo fotocatalítico, tendo-se analisado o efeito da introdução deste aditivo nas argamassas. As composições testadas demonstraram elevada capacidade fotocatalítica e de auto-limpeza, sem comprometer as suas propriedades no estado endurecido. Ao aplicar estas composições na camada de acabamento interior melhora-se a qualidade do ar no interior das habitações e reduz-se a necessidade de utilização de sistemas de ventilação. As argamassas funcionais contribuem para melhorar os níveis de sustentabilidade da construção, tendo impacto económico e ambiental em todo o ciclo de vida do edifício.