967 resultados para Tumor Necrosis Factor-alpha -- metabolism
Resumo:
OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Resumo:
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.
Resumo:
Chronic hepatitis C virus (HCV) is associated with significant morbidity and mortality, as a result of the progression towards cirrhosis and hepatocellular carcinoma. Additionally, HCV seems to be an independent risk factor for cardiovascular diseases (CVD) due to its association with insulin resistance, diabetes and steatosis. HCV infection represents an initial step in the chronic inflammatory cascade, showing a direct role in altering glucose metabolism. After achieving sustained virological response, the incidence of insulin resistance and diabetes dramatically decrease. HCV core protein plays an essential role in promoting insulin resistance and oxidative stress. On the other hand, atherosclerosis is a common disease in which the artery wall thickens due to accumulation of fatty deposits. The main step in the formation of atherosclerotic plaques is the oxidation of low density lipoprotein particles, together with the increased production of proinflammatory markers [tumor necrosis factor-α, interleukin (IL)-6, IL-18 or C-reactive protein]. The advent of new direct acting antiviral therapy has dramatically increased the sustained virological response rates of hepatitis C infection. In this scenario, the cardiovascular risk has emerged and represents a major concern after the eradication of the virus. Consequently, the number of studies evaluating this association is growing. Data derived from these studies have demonstrated the strong link between HCV infection and the atherogenic process, showing a higher risk of coronary heart disease, carotid atherosclerosis, peripheral artery disease and, ultimately, CVD-related mortality.
Resumo:
A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.
Resumo:
Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells and in reconstructed human epidermis (RHE), FasL triggered a NF-kappaB-dependent mRNA accumulation of inflammatory cytokines (tumor necrosis factor-alpha, IL-6, and IL-1beta), chemokines (CCL2/MCP-1, CXCL1/GROalpha, CXCL3/GROgamma, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis; however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas.
Resumo:
The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.
Resumo:
Although hemoglobin (Hb) is mainly present in the cytoplasm of erythrocytes (red blood cells), lower concentrations of pure, cell-free Hb are released permanently into the circulation due to an inherent intravascular hemolytic disruption of erythrocytes. Previously it was shown that the interaction of Hb with bacterial endotoxins (lipopolysaccharides, LPS) results in a significant increase of the biological activity of LPS. There is clear evidence that the enhancement of the biological activity of LPS by Hb is connected with a disaggregation of LPS. From these findings one questions whether the property to enhance the biological activity of endotoxin, in most cases proven by the ability to increase the cytokine (tumor-necrosis-factor-alpha, interleukins) production in human mononuclear cells, is restricted to bacterial endotoxin or is a more general principle in nature. To elucidate this question, we investigated the interaction of various synthetic and natural virulence (pathogenicity) factors with hemoglobin of human or sheep origin. In addition to enterobacterial R-type LPS a synthetic bacterial lipopeptide and synthetic phospholipid-like structures mimicking the lipid A portion of LPS were analysed. Furthermore, we also tested endotoxically inactive LPS and lipid A compounds such as those from Chlamydia trachomatis. We found that the observations made for endotoxically active form of LPS can be generalized for the other synthetic and natural virulence factors: In every case, the cytokine-production induced by them is increased by the addition of Hb. This biological property of Hb is connected with its physical property to convert the aggregate structures of the virulence factors into one with cubic symmetry, accompanied with a considerable reduction of the size and number of the original aggregates.
Resumo:
BACKGROUND: Regional administration of high doses of tumor necrosis factor (TNF) and interferon gamma (IFN gamma) to metastatic melanoma patients causes selective disruption of the tumor vasculature. This effect is paralleled by decreased endothelial cell proliferation and suppressed integrin alpha V beta 3-mediated adhesion in vitro. Overexpression of the cyclin-dependent kinase (cdk) inhibitory protein p16INK4a was reported to interfere with integrin alpha V beta 3-dependent melanoma cell adhesion. MATERIALS AND METHODS: TNF- and IFN gamma-treated HUVEC were analyzed for cell cycle progression and for protein expression by flow cytometry and Western blotting, respectively. p16INK4a was overexpressed by transient transfection, and HUVEC adhesion was tested in short-term adhesion assays. RESULTS: TNF and IFN gamma synergistically induced a G1 arrest associated with reduced levels of cyclin D1 and cdk2, and increased expression of the cdk inhibitors p16INK4a, p21WAF and p27Kip1. p16INK4a overexpression, however, had no effect on alpha V beta 3-mediated adhesion. CONCLUSION: These results implicate the down-regulation of cyclin D1 and cdk-2, and up-regulation of p16INK4a, p21WAF and p27Kip1 in the suppression of endothelial cell proliferation induced by TNF/IFN gamma and demonstrate that increased p16INK4a levels are not sufficient to suppress alpha V beta 3-mediated endothelial cell adhesion.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
Interleukin (IL)-12p40, a subunit of IL-12p70 and IL-23, has previously been shown to inhibit IL-12p70 activity and interferon-gamma (IFN-gamma) production. However, recent evidence has suggested that the role of IL-12p40 is more complex. To study the contribution of IL-12p40 to immune responses against mycobacterial infections, we have used transgenic (tg) mice overexpressing IL-12p40 under the control of a major histocompatibility complex-II promoter. The IL-12p40 transgene was expressed during steady state at concentrations of 129 +/- 25 ng/ml of serum and 75 +/- 13 ng per spleen, while endogenous IL-12p40 was hardly detectable in control littermates. Bacille Calmette-Guérin (BCG) infection strongly induced the expression of IL-12p40 transgene in infected organs, and IL-12p40 monomeric and dimeric forms were identified in spleen of IL-12p40 tg mice. Excessive production of IL-12p40 resulted in a 14-fold increase in IL-12p70 serum levels in tg mice versus non-transgenic mice. IL-23 was also strongly elevated in the serum and spleens of IL-12p40 tg mice through BCG infection. While IFN-gamma and tumour necrosis factor protein levels were similar in IL-12p40 tg and non-transgenic mice, Th2 type immune responses were reduced in IL-12p40 tg mice. The number of BCG granulomas and macrophage expressing inducible nitric oxide synthase were similar in IL-12p40 tg and non-transgenic mice. IL-12p40 tg mice were as resistant as non-transgenic mice to BCG and Mycobacterium tuberculosis infections as they could efficiently control bacillary growth. These data show that high amounts of IL-12p40 promotes IL-12p70 and IL-23 formation, but that does not affect T helper 1 type immune responses and granuloma function, thus leading to normal mycobacterial clearance in infected organs.
Resumo:
The granules which appear in the nucleolar area in apoptotic HL-60 cells after camptothecin administration (Zweyer et al., Exp. Cell Res. 221,27-40, 1995) were detected also in several other cell lines induced to undergo apoptosis by different stimuli, such as MOLT-4 treated with staurosporine, K-562 incubated with actinomycin D, P-815 exposed to temperature causing heat shock, Jurkat cells treated with EGTA, U-937 growing in the presence of cycloheximide and tumor necrosis factor-alpha, and HeLa cells treated with etoposide. Using immunoelectron microscopy techniques, we demonstrate that, besides the already described nuclear matrix proteins p125 and p160, these granules contain other nucleoskeletal polypeptides such as proliferating cell nuclear antigen, a component of ribonucleoprotein particles, a 105-kDa constituent of nuclear spliceosomes, and the 240-kDa nuclear mitotic apparatus-associated protein referred to as NuMA. Moreover, we also found in the granules SAF-A/hn-RNP-U and SATB1 proteins, two polypeptides that have been reported to bind scaffold-associated regions DNA sequences in vitro, thus mediating the formation of looped DNA structures in vivo. Fibrillarin and coilin are not present in these granules or the PML protein. Thus, the granules seen during the apoptotic process apparently are different from coiled bodies or other types of nuclear bodies. Furthermore, these granules do not contain chromatin components such as histones and DNA. Last, Western blotting analysis revealed that nuclear matrix proteins present in the granules are not proteolytically degraded except for the NuMA polypeptide. We propose that these granules might represent aggregates of nuclear matrix proteins forming during the apoptotic process. Moreover, since the granules are present in several cell lines undergoing apoptosis, they could be considered a previously unrecognized morphological hallmark of the apoptotic process.
Resumo:
Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.
Resumo:
BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
Resumo:
BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P<0.001), TNF-alpha (0.08+/-0.02, P<0.001) and IL-6 (0.10+/-0.03, P<0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation.
Resumo:
Growth arrest-specific gene 6 (Gas6) is expressed in antigen-presenting cells and endothelial cells (ECs) but not in T cells. When wild-type (WT) or Gas6(-/-) mice received allogeneic non-T cell-depleted bone marrow cells, hepatic graft-versus-host disease (GVHD) was alleviated in Gas6(-/-) recipients regardless of donor genotype, but not in WT recipients. T-cell infiltration was more prominent and diffuse in WT than in Gas6(-/-) recipients' liver. When mice received 0.5 x 10(6) allogeneic T cells with T cell-depleted allogeneic bone marrow, clinical signs indicated that GVHD was less severe in Gas6(-/-) than in WT recipients, as shown by a significant improvement of the survival and reduced liver GVHD. These data demonstrate that donor cells were not involved in the protection mechanism. In addition, lack of Gas6 in antigen-presenting cells did not affect WT or Gas6(-/-) T-cell proliferation. We therefore assessed the response of WT or Gas6(-/-) ECs to tumor necrosis factor-alpha. Lymphocyte transmigration was less extensive through Gas6(-/-) than WT ECs and was not accompanied by increases in adhesion molecule levels. Thus, the lack of Gas6 in ECs impaired donor T-cell transmigration into the liver, providing a rationale for considering Gas6 pathway as a potential nonimmunosuppressive target to minimize GVHD in patients receiving allogeneic hematopoietic stem cell transplantation.