954 resultados para Tropomyosin Isoforms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adiponectin is an adipokine, present in the circulation in comparatively high concentrations and different molecular weight isoforms. For the first time, the distribution of these isoforms in serum and follicular fluid (FF) and their usefulness as biological markers for infertility investigations was studied. In vitro study. University based hospital. Fifty-four women undergoing intracytoplasmic sperm injection (ICSI). Oocytes were retrieved, fertilized in vitro using ICSI, and the resulting embryos transferred. Serum was collected immediately prior to oocyte retrieval. Adiponectin isoforms (high molecular weight (HMW), medium and low molecular weight) were determined in serum and FF. Total adiponectin and the different isoform levels were compared with leptin and ovarian steroid concentrations. Adiponectin isoforms in serum and FF. Adiponectin isoform distribution differed between serum and FF; the HMW fraction made up half of all adiponectin in the serum but only 23.3% in the FF. Total and HMW adiponectin in both serum and FF correlated negatively with the body mass index and the concentration of leptin. No correlations were observed for total adiponectin or its isoforms with estradiol, progesterone, anti-Mullerian hormone, inhibin B, or the total follicle stimulating hormone (FSH) dose administered during the ovarian stimulation phase. This study shows for the first time that adiponectin isoform distribution varies between the serum and FF compartments in gonadotropin stimulated patients. A trend towards higher HMW adiponectin serum levels in successful ICSI cycles compared to implantation failures was observed; studies with larger patient groups are required to confirm this observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAPPORT DE SYNTHÈSE : Pip5k3 : Pip5k3 is a kinase responsible for fleck corneal dystrophy when mutated. It is a well conserved gene that has only been characterized in human and mouse. Characterization of pip5k3 in zebrafish was necessary before using it as a model. The protein is 70 % similar to the human homologue. The full coding sequence encompasses 6303 by and presented four isoforms. They were differentially expressed during development. All the analyzed organs of the adult zebrafish expressed pip5k3. The adult eye expressed pip5k3 in the cornea, lens, ganglion cell layer (GCL), inner nuclear layer (INL) and outer limiting membrane (OLM). During development, pip5k3 was first uniformly expressed before to be restricted to the head region and to the somites. The expression of pip5k3 in the cornea of the larval eye could make possible the study of fleck corneal dystrophy on this animal. NkxS-3 : NKXS-3 is a transcription factor responsible for a new oculo-auricular syndrome in human when mutated. This recessive disorder is characterized by defects in ear lobule and multiple defects in eye, including microphthalmia and cataract. During development, the zebrafish expressed nkx5-3 in the lens, in the anterior retina and in otic vesicles. Knockdown experiments partially phenocopied the human disease. Microphthalmia and cataract were reproduced, but zebrafish showed also defects in the cartilage of the jaw associated with a microcephaly and fins abnormalities. The retinal cell differentiation was delayed, possibly linked with the delayed expression of at`h5 and crx also observed in morphants. Shh, a regulator of ath5, was normally expressed in morphant. Overexpression of nkx5-3 lead to an anophthalmia, suggesting a role at the early organogenesis of the eye. All the phenotypes observed in morphants and embryos overexpressing nkx5-3 suggest a potential involvement of the FGF and hedgehog signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Erythropoietin (EPO) is a glycoprotein hormone endogenously produced by the kidney, whose main physiological role is the stimulation of erythropoiesis. Since the beginning of the nineties, recombinant human EPO (rhEPO), a potent anti-anaemia treatment drug, has been manufactured by pharmaceutical industries. However, the erythropoiesis stimulating power of rhEPO was rapidly misused by unscrupulous athletes in order to improve their performances in endurance sports. Endogenous EPO has the same amino-acid backbone as most of recombinant forms; the molecules however differ through their respective glycosylation patterns. This difference constitutes the basis of the usual EPO screening test (IEF) developed in 2000 and still currently used in all anti-doping laboratories of the world. Nowadays, 3 EPO generations have been commercialized. The fight against EPO abuse is a continuous challenge for anti-doping laboratories. The diversity of recombinant EPO forms and the continuous development of new ones considerably confuse the identification of EPO doping. Several facets of this fight were investigated in this work. One of the limiting aspects of doping agents screening is the availability of positive samples. Therefore, 2nd and 3rd generation EPOS, namely NESP and C.E.R.A., were injected to healthy subjects in the frame of pilot clinical studies. These latter allowed to review the current EPO identification criteria defined by the World Anti-Doping Agency (WADA) in the case of NESP and to validate and implement a new assay targeting C.E.R.A. in human serum. Both studies resulted in the determination of the respective detection windows of NESP and C.E.R.A. in biological fluids. Following that, Dynepo, a 1st generation EPO presenting similarities with the endogenous form, was also in the centre of a similar clinical study. Our work aimed to overcome the actual identification criteria, which are not adapted to Dynpeo, and to propose an alternative pattern classification method based on the discriminant analysis of IEF EPO profiles. This method might be validated for other EPO forms in the future. The detection window of this molecule was also determined. Under particular conditions, confounding effects can complicate the identification of EPO in biological matrices. For example, athletes having performed a strenuous physical effort can excrete modified isoforms of endogenous EPO, making it very similar to some recombinant forms. Such phenomena, called effort urines, were reproduced under controlled conditions and, after characterization of effort EPO, an urinary biochemical marker was proposed to unequivocally identify effort urines. It also happens that EPO analyses fail to detect endogenous levels of EPO. Such profiles were thoroughly investigated and potential causes identified. Natural reasons relying on urine properties and test specificity were underlined, but the possible addition of adulterant agents in urine samples was also considered. Therefore, a simple biochemical assay targeting the suspected substances was set up. Our work was based on the characterization of atypical EPO profiles from different origins. Therefore, 3 EPO molecules representing the 3 generations of the drug and 2 confounding effects confusing the results interpretation were studied. These studies resulted in tangible applications for the laboratory, the best example of which being the C.E.R.A. assay, but also in scientific findings allowing to improve our comprehension of EPO doping in sport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with beta-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the study of a large American family displaying autosomal dominant retinitis pigmentosa with reduced penetrance, a form of hereditary retinal degeneration. Although the inheritance pattern and previous linkage mapping pointed to the involvement of the PRPF31 gene, extensive screening of all its exons and their boundaries failed in the past to reveal any mutation. In this work, we sequenced the entire PRPF31 genomic region by both the classical Sanger method and ultrahigh throughput (UHT) sequencing. Among the many variants identified, a single-base substitution (c.1374+654C>G) located deep within intron 13 and inside a repetitive DNA element was common to all patients and obligate asymptomatic carriers. This change created a new splice donor site leading to the synthesis of two mutant PRPF31 isoforms, degraded by nonsense-mediated mRNA decay. As a consequence, amounts of PRPF31 mRNA derived from the mutant allele were very reduced, with no evidence of mutant proteins being synthesized. Our results indicate that c.1374+654C>G causes retinitis pigmentosa via haploinsufficiency, similar to the vast majority of PRPF31 mutations described so far. We discuss the potential of UHT sequencing technologies in mutation screening and the continued identification of pathogenic splicing mutations buried deep within intronic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro studies have shown that stimulation of alpha1-adrenoceptors (ARs) directly induces proliferation, hypertrophy, and migration of arterial smooth muscle cells and adventitial fibroblasts. In vivo studies confirmed these findings and showed that catecholamine trophic activity becomes excessive after experimental balloon injury and contributes to neointimal growth, adventitial thickening, and lumen loss. However, past studies have been limited by selectivity of pharmacological agents. The aim of this study, in which mice devoid of norepinephrine and epinephrine synthesis [dopamine beta-hydroxylase (DBH-/-)] or deficient in alpha1-AR subtypes expressed in murine carotid (alpha1B-AR-/- and alpha1D-AR-/-) were used, was to test the hypothesis that catecholamines contribute to wall hypertrophy after injury. At 3 wk after injury of wild-type mice, lumen area and carotid circumference increased significantly, and hypertrophy of media and adventitia was in excess of that needed to restore circumferential wall stress to normal. In DBH-/- and alpha1B-AR-/- mice, increases in lumen area, circumference, and hypertrophy of the media and adventitia were reduced by 50-91%, resulting in restoration of wall tension to nearly normal (DBH-/-) or normal (alpha1B-AR-/-). In contrast, in alpha1D-AR-/- mice, increases in lumen area, circumference, and wall hypertrophy were unaffected and wall thickening remained in excess of that required to return tension to normal. When examined 5 days after injury, proliferation and leukocyte infiltration were inhibited in DBH-/- mice. These studies suggest that the trophic effects of catecholamines are mediated primarily by alpha1B-ARs in mouse carotid and contribute to hypertrophic growth after vascular injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most models for tauopathy use a mutated form of the Tau gene, MAPT, that is found in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and that leads to rapid neurofibrillary degeneration (NFD). Use of a wild-type (WT) form of human Tau protein to model the aggregation and associated neurodegenerative processes of Tau in the mouse brain has thus far been unsuccessful. In the present study, we generated an original "sporadic tauopathy-like" model in the rat hippocampus, encoding six Tau isoforms as found in humans, using lentiviral vectors (LVs) for the delivery of a human WT Tau. The overexpression of human WT Tau in pyramidal neurons resulted in NFD, the morphological characteristics and kinetics of which reflected the slow and sporadic neurodegenerative processes observed in sporadic tauopathies, unlike the rapid neurodegenerative processes leading to cell death and ghost tangles triggered by the FTDP-17 mutant Tau P301L. This new model highlights differences in the molecular and cellular mechanisms underlying the pathological processes induced by WT and mutant Tau and suggests that preference should be given to animal models using WT Tau in the quest to understand sporadic tauopathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Τ cell activation via the Τ cell receptor (TCR) through antigen recognition is one of the key steps to initiate the adaptive immune response. The mechanisms controlling TCR-induced signaling pathways are the subject of intense research, since deregulated signaling in lymphocytes can lead to immunodeficiency, autoimmunity or lymphomas. In Τ lymphocytes a complex composed of CARMA1, BCL10 and MALT1 has been identified to receive signals from TCR proximal events and to induce further signals crucial for Τ cell activation. MALT1 is scaffold protein and a cysteine protease and both functions have been shown, among other effects, to be crucial to initiate the activation of the transcription factors of the nuclear factor κΒ (NF-κΒ) family after TCR-stimulation. Several proteolytic targets have been described recently and all of them play roles in modulating NF-κΒ activation or other aspects of Τ cell activation. In this study, we describe a novel target of MALT1, Caspase-10. Two isoforms of Caspase-10 are cleaved by MALTI in Τ and Β cells after antigen receptor stimulation. Caspases are a family of cysteine proteases that are known for their roles in cell death and certain immune functions. Caspase-10 has so far only been reported to be involved in the induction of apoptosis. However it is very closely related to the well-characterized Caspase-8 that has been reported to be involved in Τ cell activation. In the present study, we describe a crucial role for Caspase-10, but not Caspase-8, in Τ cell activation after TCR stimulation. Jurkat Τ cells silenced for Caspase-10 expression exhibit a dramatic reduction in IL-2 production following stimulation. The data obtained revealed that this is due to severely reduced activation of activator protein-1 (AP-1), another transcription factor family with key functions in the process of Τ cell activation. We observed strongly reduced expression levels of the AP-1 family member c-Fos after Τ cell stimulation. This transcription factor is expressed upon TCR stimulation and is a crucial component of AP-1 transcription factor dimers required for Τ cell activation. In further analysis, it was shown that this defect is not based on reduced transcription, as the c-Fos mRNA levels are not altered, but rather seems to be caused by a defect in translation or protein stability in the absence of Caspase-10. Furthermore, we report a potential interaction of the c-Fos protein and Caspsae-10. This role of Caspase-10 in AP-1 activation however is independent of its cleavage by MALT1, leaving the role of Caspase-10 cleavage in activated lymphocytes unclear. Taken together, these results give new insights into the complex matter of lymphocyte activation whose understanding is crucial for the development of new drugs modulating the immune response or inhibiting lymphoma progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.