928 resultados para Traveling libraries
Resumo:
During assembly of the phagocyte NADPH oxidase, cytosolic p47-phox translocates to the plasma membrane and binds to flavocytochrome b, and binding domains for p47-phox have been identified on the C-terminal tails of both flavocytochrome b subunits. In the present report, we further examine the interaction of these two oxidase components by using random-sequence peptide phage display library analysis. Screening p47-phox with the peptide libraries identified five potential sites of interaction with flavocytochrome b, including three previously reported regions of interaction and two additional regions of interaction of p47-phox with gp91-phox and p22-phox. The additional sites were mapped to a domain on the first predicted cytosolic loop of gp91-phox encompassing residues S86TRVRRQL93 and to a domain near the cytosolic C-terminal tail of gp91-phox encompassing residues F450EWFADLL457. The mapping also confirmed a previously reported binding domain on gp91-phox (E554SGPRGVHFIF564) and putative Src homology 3 domain binding sites on p22-phox (P156PRPP160 and G177GPPGGP183). To demonstrate that the additional regions identified were biologically significant, peptides mimicking the gp91-phox sequences F77LRGSSACCSTRVRRQL93 and E451WFADLLQLLESQ463 were synthesized and assayed for their ability to inhibit NADPH oxidase activity. These peptides had EC50 values of 1 microM and 230 microM, respectively, and inhibited activation when added prior to assembly but did not affect activity of the preassembled oxidase. Our data demonstrate the usefulness of phage display library analysis for the identification of biologically relevant sites of protein-protein interaction and show that the binding of p47-phox to flavocytochrome b involves multiple binding sites along the C-terminal tails of both gp91- and p22-phox and other regions of gp91-phox nearer to the N terminus.
Resumo:
Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.
Resumo:
Fusion phage libraries expressing single-chain Fv antibodies were constructed from the peripheral blood lymphocytes of two melanoma patients who had been immunized with autologous melanoma cells transduced the gamma-interferon gene to enhance immunogenicity, in a trial conducted at another institution. Anti-melanoma antibodies were selected from each library by panning the phage against live cultures of the autologous tumor. After two or three rounds of panning, clones of the phage were tested by ELISA for binding to the autologous tumor cells; > 90% of the clones tested showed a strong ELISA reaction, demonstrating the effectiveness of the panning procedure for selecting antimelanoma antibodies. The panned phage population was extensively absorbed against normal melanocytes to enrich for antibodies that react with melanoma cells but not with melanocytes. The unabsorbed phage were cloned, and the specificities of the expressed antibodies were individually tested by ELISA with a panel of cultured human cells. The first tests were done with normal endothelial and fibroblast cells to identify antibodies that do not react, or react weakly, with two normal cell types, indicating some degree of specificity for melanoma cells. The proportion of phage clones expressing such antibodies was approximately 1%. Those phage were further tested by ELISA with melanocytes, several melanoma lines, and eight other tumor lines, including a glioma line derived from glial cells that share a common lineage with melanocytes. The ELISA tests identified three classes of anti-melanoma antibodies, as follows: (i) a melanoma-specific class that reacts almost exclusively with the melanoma lines; (ii) a tumor-specific class that reacts with melanoma and other tumor lines but does not react with the normal melanocyte, endothelial and fibroblast cells; and (iii) a lineage-specific class that reacts with the melanoma lines, melanocytes, and the glioma line but does not react with the other lines. These are rare classes from the immunized patients' repertoires of anti-melanoma antibodies, most of which are relatively nonspecific anti-self antibodies. The melanoma-specific class was isolated from one patient, and the lineage-specific class was isolated from the other patient, indicating that different patients can have markedly different responses to the same immunization protocol. The procedures described here can be used to screen the antibody repertoire of any person with cancer, providing access to an enormous untapped pool of human monoclonal anti-tumor antibodies with clinical and research potential.
Resumo:
Very large combinatorial libraries of small molecules on solid supports can now be synthesized and each library element can be identified after synthesis by using chemical tags. These tag-encoded libraries are potentially useful in drug discovery, and, to test this utility directly, we have targeted carbonic anhydrase (carbonate dehydratase; carbonate hydro-lyase, EC 4.2.1.1) as a model. Two libraries consisting of a total of 7870 members were synthesized, and structure-activity relationships based on the structures predicted by the tags were derived. Subsequently, an active representative of each library was resynthesized (2-[N-(4-sulfamoylbenzoyl)-4'-aminocyclohexanespiro]-4-oxo-7 -hydroxy- 2,3-dihydrobenzopyran and [N-(4-sulfamoylbenzoyl)-L-leucyl]piperidine-3-carboxylic acid) and these compounds were shown to have nanomolar dissociation constants (15 and 4 nM, respectively). In addition, a focused sublibrary of 217 sulfamoylbenzamides was synthesized and revealed a clear, testable structure-activity relationship describing isozyme-selective carbonic anhydrase inhibitors.
Resumo:
Construction of synthetic combinatorial libraries is described that allows for the generation of a library of motifs rather than a library of compounds. Peptide libraries based on this strategy were synthesized and screened with model targets streptavidin and anti-beta-endorphin antibody. The screens resulted in observation of expected motifs providing evidence of the effectiveness of the suggested approach.
Resumo:
A technique is described for the simultaneous and controlled random mutation of all three heavy or light chain complementarity-determining regions (CDRs) in a single-chain Fv specific for the O polysaccharide of Salmonella serogroup B. Sense oligonucleotides were synthesized such that the central bases encoding a CDR were randomized by equimolar spiking with A, G, C, and T at a level of 10% while the antisense strands contained inosine in the spiked regions. Phage display of libraries assembled from the spiked oligonucleotides by a synthetic ligase chain reaction demonstrated a bias for selection of mutants that formed dimers and higher oligomers. Kinetic analyses showed that oligomerization increased association rates in addition to slowing dissociation rates. In combination with some contribution from reduced steric clashes with residues in heavy-chain CDR2, oligomerization resulted in functional affinities that were much higher than that of the monomeric form of the wild-type single-chain Fv.
Resumo:
A method for isolating and cloning mRNA populations from individual cells in living, intact plant tissues is described. The contents of individual cells were aspirated into micropipette tips filled with RNA extraction buffer. The mRNA from these cells was purified by binding to oligo(dT)-linked magnetic beads and amplified on the beads using reverse transcription and PCR. The cell-specific nature of the isolated mRNA was verified by creating cDNA libraries from individual tomato leaf epidermal and guard cell mRNA preparations. In testing the reproducibility of the method, we discovered an inherent limitation of PCR amplification from small amounts of any complex template. This phenomenon, which we have termed the "Monte Carlo" effect, is created by small and random differences in amplification efficiency between individual templates in an amplifying cDNA population. The Monte Carlo effect is dependent upon template concentration: the lower the abundance of any template, the less likely its true abundance will be reflected in the amplified library. Quantitative assessment of the Monte Carlo effect revealed that only rare mRNAs (< or = 0.04% of polyadenylylated mRNA) exhibited significant variation in amplification at the single-cell level. The cDNA cloning approach we describe should be useful for a broad range of cell-specific biological applications.
Resumo:
The main goal of this project was to develop an efficient methodology allowing rapid access to structurally diverse scaffolds decorated with various functional groups. Initially, we discovered and subsequently developed an experimentally straightforward, high-yielding photoinduced conversion of readily accessible diverse starting materials into polycyclic aldehydes and their (hemi)acetals decorated by various pendants. The two step sequence, involving the Diels-Alder addition of heterocyclic chalcones and other benzoyl ethylenes to a variety of dienes, followed by the Paternò-Büchi reaction, was described as an alkene-carbonyl oxametathesis. This methodology offers a rapid increase in molecular complexity and diversity of the target scaffolds. To develop this novel methodology further and explore its generality, we directed our attention to the Diels-Alder adducts based on various chromones. We discovered that the Diels-Alder adducts of chromones are capable of photoinduced alkene-arene [2+2] cycloaddition producing different dienes, which can either dimerize or be introduced into a double-tandem [4π+2π]·[2π+2π]·[4π+2π]·[2π+2π] synthetic sequence, followed by an acid-catalyzed oxametathesis, leading to a rapid expansion of molecular complexity over a few experimentally simple steps. In view of the fact that oxametathesis previously was primarily observed in aromatic oxetanes, we decided to prepare model aliphatic oxetanes with a conformationally unconstrained or "flexible" methyl group based on the Diels-Alder adducts of cyclohexadiene or cyclopentadiene with methyl vinyl ketone. Upon addition of an acid, the expected oxametathesis occurred with results similar to those observed in the aromatic series proving the generality of this approach. Also we synthesized polycyclic oxetanes resulting from the Diels-Alder adducts of cyclic ketones. This not only gave us access to remarkably strained oxetane systems, but also the mechanism for their protolytic ring opening provided a great deal of insight to how the strain affects the reactivity. Additionally, we discovered that although the model Hetero-Diels-Alder adducts did not undergo [2+2] cycloaddition, both exo- and endo-Sulfa-Diels-Alder products, nonetheless, were photochemically active and various products with defined stereochemistry could be produced upon photolysis. In conclusion, we have developed an approach to the encoding and screening of solution phase libraries based on the photorelease of externally sensitized photolabile tags. The encoding tags can be released into solution only when a binding event occurs between the ligand and the receptor, equipped with an electron transfer sensitizer. The released tags are analyzed in solution revealing the identity of the lead ligand or narrowing the range of potential leads.
Resumo:
This paper provides an overview of a case study research that investigated the use of Digital Library (DL) resources in two undergraduate classes and explored faculty and students’ perceptions of educational digital libraries. This study found that students and faculty use academic DLs primarily for textual resources, but turn to the open Web for visual and multimedia resources. The study participants did not perceive academic libraries as a useful source of digital images and used search engines when searching for visual resources. The limited use of digital library resources for teaching and learning is associated with perceptions of usefulness and ease of use, especially if considered in a broader information landscape, in conjunction with other library information systems, and in the context of Web resources. The limited use of digital libraries is related to the following perceptions: 1) Library systems are not viewed as user-friendly, which in turn discourages potential users from trying DLs provided by academic libraries; 2) Academic libraries are perceived as places of primarily textual resources; perceptions of usefulness, especially in regard to relevance of content, coverage, and currency, seem to have a negative effect on user intention to use DLs, especially when searching for visual materials.
Resumo:
The Colorado Alliance of Research Libraries has launched the Alliance Shared Print Trust and is in the process of developing a shared print analysis tool. The system allows libraries to compare themselves with other libraries that have added their MARC records so that they can easily and quickly determine what records are unique or held in common with other libraries. The comparison system is built on open source tools and has been embedded in the Gold Rush framework. The author provides a brief overview of other shared print analysis tools.
Resumo:
In this small paper-bound catalog, Benjamin Welles (1781-1860) listed books in the Harvard College Library which he wished to read. He presumably compiled the list by consulting the Library's 1790 printed catalog, as the works are categorized according to subjects outlined in that catalog (Antiquities, Astronomy, Ancient Authors, Biography, Sacred Criticism, Ethics, Geography, Geometry, History, Nature, Travels / Voyages, Natural Law, Logic, Metaphysics, Miscellaneous Works, Dramatic, Phililogy, Natural Philosophy, Poetry, Rhetoric, and Theology). The final pages of Welles' catalog, which he titles "Another Selection," list additional volumes he wished to read. These are listed alphabetically, A - G. Some titles throughout the catalog have been marked with a "+" perhaps to indicate that Welles had read them.