983 resultados para Transactional Distance Theory
Resumo:
A comparative study of carbon gasification with O-2 and CO2 was conducted by using density functional theory calculations. It was found that the activation energy and the number of active sites in carbon gasification reactions are significantly affected by both the capacity and manner of gas chemisorption. O-2 has a strong adsorption capacity and the dissociative chemisorption of O-2 is thermodynamically favorable on either bare carbon surface or even isolated edge sites. As a result, a large number of semiquinone and o-quinone oxygen can be formed indicating a significant increase in the number of active sites. Moreover, the weaker o-quinone C-C bonds can also drive the reaction forward at (ca. 30%) lower activation energy. Epoxy oxygen forms under relatively high O-2 pressure, and it can only increase the number of active sites, not further reduce the activation energy. CO2 has a lower adsorption capacity. Dissociative chemisorption of CO2 can only occur on two consecutive edge sites and o-quinone oxygen formed from CO2 chemisorption is negligible, let alone epoxy oxygen. Therefore, CO2-carbon reaction needs (ca 30%) higher activation energy. Furthermore, the effective active sites are also reduced by the manner Of CO2 chemisorption. A combination of the higher activation energy and the fewer active sites leads to the much lower reaction rate Of CO2-carbon.
Resumo:
This article presents a fairness theory-based conceptual framework for studying and managing consumers’ emotions during service recovery attempts. The conceptual framework highlights the central role played by counterfactual thinking and accountability. Findings from five focus groups are also presented to lend further support to the conceptual framework. Essentially, the article argues that a service failure event triggers an emotional response in the consumer, and from here the consumer commences an assessment of the situation, considering procedural justice, interactional justice, and distributive justice elements, while engaging in counterfactual thinking and apportioning accountability. More specifically, the customer assesses whether the service provider could and should have done something more to remedy the problem and how the customer would have felt had these actions been taken. The authors argue that during this process situational effort is taken into account when assessing accountability. When service providers do not appear to exhibit an appropriate level of effort, consumers attribute this to the service provider not caring. This in turn leads to the customer feeling more negative emotions, such as anger and frustration. Managerial implications of the study are discussed.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
Motivated by application of current superalgebras in the study of disordered systems such as the random XY and Dirac models, we investigate gl(2\2) current superalgebra at general level k. We construct its free field representation and corresponding Sugawara energy-momentum tensor in the non-standard basis. Three screen currents of the first kind are also presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Knowledge, especially scientific and technological knowledge, grows according to knowledge trajectories and guideposts that make up the prior knowledge of an organization. We argue that these knowledge structures and their specific components lead to successful innovation. A firm's prior knowledge facilitates the absorption of new knowledge, thereby renewing a firm's systematic search, transfer and acquisition of knowledge and capabilities. In particular, the exponential growth in biotechnology is characterized by the convergence of disparate scientific and technological knowledge resources. This paper examines the shift from protein-based to DNA-based diagnostic technologies as an example, to quantify the value of a firm's prior knowledge using relative values of knowledge distance. The distance between core prior knowledge and the rate of transition from one knowledge system to another has been identified as a proxy for the value a firm's prior knowledge. The overall difficulty of transition from one technology paradigm to another is discussed. We argue this transition is possible when the knowledge distance is minimal and the transition process has a correspondingly high value of absorptive capacities. Our findings show knowledge distance is a determinant of the feasibility, continuity and capture of scientific and technological knowledge. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
In this paper we examine the effects of varying several experimental parameters in the Kane quantum computer architecture: A-gate voltage, the qubit depth below the silicon oxide barrier, and the back gate depth to explore how these variables affect the electron density of the donor electron. In particular, we calculate the resonance frequency of the donor nuclei as a function of these parameters. To do this we calculated the donor electron wave function variationally using an effective-mass Hamiltonian approach, using a basis of deformed hydrogenic orbitals. This approach was then extended to include the electric-field Hamiltonian and the silicon host geometry. We found that the phosphorous donor electron wave function was very sensitive to all the experimental variables studied in our work, and thus to optimize the operation of these devices it is necessary to control all parameters varied in this paper.
Resumo:
Distance learners are self-directed learners traditionally taught via study books, collections of readings, and exercises to test understanding of learning packages. Despite advances in e-Learning environments and computer-based teaching interfaces, distance learners still lack opportunities to participate in exercises and debates available to classroom learners, particularly through non-text based learning techniques. Effective distance teaching requires flexible learning opportunities. Using arguments developed in interpretation literature, we argue that effective distance learning must also be Entertaining, Relevant, Organised, Thematic, Involving and Creative—E.R.O.T.I.C. (after Ham, 1992). We discuss an experiment undertaken with distance learners at The University of Queensland Gatton Campus, where we initiated an E.R.O.T.I.C. external teaching package aimed at engaging distance learners but using multimedia, including but not limited to text-based learning tools. Student responses to non-text media were positive.
Resumo:
This paper reports a study that explored a new construct: climate of fear. We hypothesised that climate of fear would vary across work sites within organisations, but not across organisations. This is in contrast a to measures of organisational culture, which were expected to vary both within and across organisations. To test our hypotheses, we developed a new 13-item measure of perceived fear in organisations and tested it in 20 sites across two organisations (N = 209). Culture variables measured were innovative leadership culture, and communication culture. Results were that climate of fear did vary across sites in both organisations, while differences across organisations were not significant, as we anticipated. Organisational culture, however, varied between the organisations, and within one of the organisations. The climate of fear scale exhibited acceptable psychometric properties.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.