988 resultados para Toxocara spp
Resumo:
Lavenders belong to the family Labiatae and represent some of the most popular medicinal plants of great economic importance. Their essential oils are important for the perfume, cosmetic, flavouring and pharmaceutical industries. However, despite its popularity, and the long tradition of use, biological properties of the various Lavandula species are not yet been well sustained by scientific or clinical studies and some available data being inconclusive and controversial [1]. Although Lavandula spp. have similar ethnobotanical properties, however, chemical composition and therapeutic uses differ from different species and main composition of essential oils showed differences with species and with the region were they grow [1,2,3]. L. stoechas L. subsps. luisieri (Rozeira) Rozeira. L. pedunculata (Mill.) Cav. and L. viridis L’Hér are endemic to the Iberian Peninsula, widespread in the South of Portugal, namely in Alentejo and Algarve. In our work, essential oils from the stems or leaves from wild grown plants of L. luisieri (Alentejo), L. pedunculata (Alentejo) and L. viridis (Algarve), were extracted by hydrodistillation and analyzed by GC-FID. Antimicrobial activity was evaluated by solid diffusion disk assay and minimal inhibitory concentration (MIC) against pathogenic Gram-positive and Gram-negative bacteria and food spoilage fungi.
Resumo:
No presente trabalho estudaram-se três espécies do género Lavandula, do sul de Portugal: L. luisieri e L. pedunculata (Alentejo) e L.viridis (Algarve), com vista caraterizar a composição química dos óleos essenciais das diferentes espécies, parte vegetativa (folha) e espiga floral, e dos respetivos extratos de hidrodestilação, e avaliar as propriedades antioxidante, antimicrobiana, toxicológica, analgésica e antiinflamatória de alguns dos seus óleos essenciais e extratos aquosos, mais promissores. Os resultados mostraram importantes diferenças na composição química dos óleos essenciais, quanto à diversidade e à proporção dos seus constituintes. Os óleos essenciais e hidrolatos, em estudo, apresentaram importantes propriedades antioxidantes e antimicrobianas. Os estudos toxicológicos e farmacológicos mostraram que os óleos apresentaram citotoxicidade em Artemia salina, apresentaram valores de DL50 muito superiores a 2000 mg/kg em ratinhos Swiss, e que possuem importantes propriedades analgésicas e anti-inflamatória. Estes resultados sugerem o seu potencial uso para aplicações farmacológicas como agentes nutracêuticos e/ou fitoterapêuticos; ABSTRACT:The aim of present work was to develop a set of studies of three species of the genera Lavandula, at the South of Portugal: L. luisieri e L. pedunculata (Alentejo) e L.viridis (Algarve), in order to characterize the chemical composition of the essential oils (leaves and flowers) and to evaluate the antioxidant, antimicrobial, toxicological and pharmacological properties of selected essential oils and aqueous extracts. Results show important differences in chemical composition of essential oils, both in diversity as the proportion of their constituents. Essential oils and aqueous extracts of different Lavandula spp. showed important antimicrobial and antioxidant properties. Pharmacological studies have shown that essential oils showed cytotoxicity against Artemia salina, low acute toxicity, with LD50 >> 2000 mg/kg for mice, and important analgesic and anti-inflammatory properties. These results suggest their potential use for pharmacological applications as nutraceutical and/or phytotherapeutic agents.
Resumo:
Cationic porphyrins have been widely used as photosensitizers (PSs) in the inactivation of microorganisms, both in biofilms and in planktonic forms. However, the application of curcumin, a natural PS, in the inactivation of biofilms, is poorly studied. The objectives of this study were (1) to evaluate and compare the efficiency of a cationic porphyrin tetra (Tetra-Py+-Me) and curcumin in the photodynamic inactivation of biofilms of Pseudomonas spp and the corresponding planktonic form; (2) to evaluate the effect of these PSs in cell adhesion and biofilm maturation. In eradication assays, biofilms of Pseudomonas spp adherent to silicone tubes were subjected to irradiation with white light (180 J cm-2) in presence of different concentrations (5 and 10 μM) of PS. In colonization experiments, solid supports were immersed in cell suspensions, PS was added and the mixture experimental setup was irradiated (864 J cm-2) during the adhesion phase. After transference solid supports to new PS-containing medium, irradiation (2592 J cm-2) was resumed during biofilm maturation. The assays of inactivation of planktonic cells were conducted in cell suspensions added of PS concentrations equivalent to those used in experiments with biofilms. The inactivation of planktonic cells and biofilms (eradication and colonization assays) was assessed by quantification of viable cells after plating in solid medium, at the beginning and at the end of the experiments. The results show that porphyrin Tetra-Py+-Me effectively inactivated planktonic cells (3.7 and 3.0 log) and biofilms of Pseudomonas spp (3.2 and 3.6 log). In colonization assays, the adhesion of cells was attenuated in 2.2 log, and during the maturation phase, a 5.2 log reduction in the concentration of viable cells was observed. Curcumin failed to cause significant inactivation in planktonic cells (0.7 and 0.9 log) and for that reason it was not tested in biofilm eradication assays. In colonization assays, curcumin did not affect the adhesion of cells to the solid support and caused a very modest reduction (1.0 log) in the concentration of viable cells during the maturation phase. The results confirm that the photodynamic inactivation is a promising strategy to control installed biofilms and in preventing colonization. Curcumin, however, does not represent an advantageous alternative to porphyrins in the case of biofilms of Pseudomonas spp.
Resumo:
Tese dout., Ecologia, Universidade do Algarve, 2006
Resumo:
Tese de mestrado em Bioinformática e Biologia Computacional (Bioinformática), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2014
Resumo:
Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.
Resumo:
The aim of this paper is to analyse variations in the severity of Betula pollen seasons, particularly in relation to meteorological parameters at four sites, Poznań and Krakow in Poland and Worcester and London in the United Kingdom. Results show that there is a significant relationship between Betula pollen season severity and weather conditions in the year before pollination as well as conditions in the same year that pollen is released from the plant. Furthermore, it is likely that the magnitude of birch pollen seasons in Poznań, Worcester and London is linked in some way to different phases of the North Atlantic Oscillation (NAO). Significant positive relationships exist between birch pollen counts at Poznań and temperatures, rainfall and averages of the NAO in the year before pollination. An opposite relationship is evident at the two sites studied in the British Isles. There were significant positive correlations between the severity of birch pollen seasons recorded at Worcester and London and temperatures and averages of the NAO during the year of pollination, and negative correlations with similar variables from the previous year. In addition, Betula pollen seasons in Krakow do not appear to be influenced by the NAO, which is probably the result of Krakow having a more continental climate.
Resumo:
In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA-FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA-FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton.
Resumo:
There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.
Resumo:
Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of themost important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (N100 s m−3) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis showthat, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW–W; and (2) NW–NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.
Resumo:
2015
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Analiza la información biológica y de las principales áreas de pesca del recurso. El rango de tallas fue 11,0 - 41,0 cm y la talla media entre 24,0 - 26,1 cm.
Resumo:
Although a substantial amount of research has been done on all aspects ofHeliconius biology and their ecological interactions with Passiflora, there has not hitherto been a phylogenetic examination of this association for coevolution. To test the HeliconiuslPassilfora association for coevolutionary congruence, phylogenies for each group were established and compared. The phylogeny for 14 species ofHeliconiinae from Costa Rica was based on combined sequence data from rRNA ITS 2 and partial EF-1a gene regions. For the Passifloraceae, 17 host plant species were utilized to establish a phylogeny based on tRNALeucine and ITS 1/5.8S1 ITS 2 sequence data. The phylogenies for both groups were largely in agreement with current classification (for Passifloraceae) and previously established phylogenies. Associations with the large subgenera Passiflora and Decaloba correspond with the two major Advanced Radiation groups in Heliconius. Although strict congruence above subgenus level was not observed, broad scale congruence was evident. One main host shift as well as other possible explanations for lack of strict congruence are suggested.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.