833 resultados para Tonometry, Ocular
Resumo:
Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked ('Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.
Resumo:
To evaluate a new high-resolution noncontact biometer (Lenstar; Haag-Streit AG, Koeniz, Switzerland) using optical low-coherence reflectometry and to compare the clinical measurements with those obtained from the IOLMaster (Carl Zeiss, Jena, Germany) and the Pachmumeter (Haag-Streit AG).
Resumo:
Endothelial dysfunction is recognized as the primum movens in the development of atherosclerosis. Its crucial role in both cardiovascular morbidity and mortality has been confirmed. In the past, research was hampered by the invasive character of endothelial function assessment. The development of non-invasive and feasible techniques to measure endothelial function has facilitated and promoted research in various adult and paediatric subpopulations. To avoid user dependence of flow-mediated dilation (FMD), which evaluates nitric oxide dependent vasodilation in large vessels, a semi-automated, method to assess peripheral microvascular function, called peripheral arterial tonometry (Endo-PAT®), was recently introduced. The number of studies using this technique in children and adolescents is rapidly increasing, yet there is no consensus with regard to either measuring protocol or data analysis of peripheral arterial tonometry in children and adolescents. Most paediatric studies simply applied measuring and analysing methodology established in adults, a simplification that may not be appropriate. This paper provides a detailed description of endothelial function assessment using the Endo-PAT for researchers and clinicians. We discuss clinical and methodological considerations and point out the differences between children, adolescents and adults. Finally, the main aim of this paper is to provide recommendations for a standardised application of Endo-PAT in children and adolescents, as well as for population-specific data analysis methodology.
Resumo:
OBJECTIVE: (1) To describe the ultrasonographic appearance of multiple congenital ocular anomalies (MCOA) in the eyes of horses with the PMEL17 (Silver) mutant gene. (2) To compare the accuracy of B-mode ocular ultrasound to conventional direct ophthalmoscopy. ANIMALS STUDIED: Sixty-seven Comtois and 18 Rocky Mountain horses were included in the study. PROCEDURES: Horses were classified as being carriers or noncarriers of the PMEL17 mutant allele based on coat color or genetic testing. Direct ophthalmoscopy followed by standardized ultrasonographic examination was performed in all horses. RESULTS: Seventy-five of 85 horses (88.24%) carried at least one copy of the Silver mutant allele. Cornea globosa, severe iridal hypoplasia, uveal cysts, cataracts, and retinal detachment could be appreciated with ultrasound. Carrier horses had statistically significantly increased anterior chamber depth and decreased thickness of anterior uvea compared with noncarriers (P < 0.05). Uveal cysts had a wide range of location and ultrasonographic appearances. In 51/73 (69.86%) carrier horses, ultrasound detected ciliary cysts that were missed with direct ophthalmoscopy. CONCLUSIONS: In this study, ultrasonography was useful to identify uveal cysts in PMEL17 mutant carriers and to assess anterior chamber depth.
Resumo:
Glaucoma is a collection of diseases characterized by multifactorial progressive changes leading to visual field loss and optic neuropathy most frequently due to elevated intraocular pressure (IOP). The goal of treatment is the lowering of the IOP to prevent additional optic nerve damage. Treatment usually begins with topical pharmacological agents as monotherapy, progresses to combination therapy with agents from up to 4 different classes of IOP-lowering medications, and then proceeds to laser or incisional surgical modalities for refractory cases. The fixed combination therapy with the carbonic anhydrase inhibitor dorzolamide hydrochloride 2% and the beta blocker timolol maleate 0.5% is now available in a generic formulation for the treatment of patients who have not responded sufficiently to monotherapy with beta adrenergic blockers. In pre- and postmarketing clinical studies, the fixed combination dorzolamide-timolol has been shown to be safe and efficacious, and well tolerated by patients. The fixed combination dorzolamide-timolol is convenient for patients, reduces their dosing regimen with the goal of increasing their compliance, reduces the effects of "washout" when instilling multiple drops, and reduces the preservative burden by reducing the number of drops administered per day.
Resumo:
A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.
Resumo:
BACKGROUND Assessment of endothelial function of the microvasculature by peripheral arterial tonometry (EndoPAT(®)) has gained increasing popularity in patients with cardiovascular risk factors. Only limited knowledge about its reproducibility in patients with coronary artery disease (CAD) is available. We therefore aimed to quantify reproducibility of EndoPAT(®) parameters in patients with stable CAD. DESIGN EndoPAT(®) measurements were performed repeatedly in 78 male patients (age 66 ± 8 years) with CAD on stable medication. We calculated overall mean, standard deviation (SD), coefficient of variation (CV) and intraclass correlation coefficient (ICC) of the following parameters: reactive hyperemic index (RHI), PAT ratio of the postocclusion period 90-150 s as used for calculation of the RHI (PAT ratio90-150 s) and 90-120 s (PAT ratio90-120 s) as used for the often employed Framingham RHI (F-RHI), as well as PAT ratio of the peak hyperemic response (PAT ratiopeak response). Additionally, least significant changes (LSC) for individual subjects and minimum sample sizes for parallel and cross-over design studies were calculated. RESULTS Mean RHI was 1·84 (SD 0·36). For RHI, PAT ratio90-150 s , PAT ratio90-120 s , and PAT ratiopeak response the CVs were 17·0%, 25·4%, 26·1%, and 25·0%, respectively. The ICCs were 0·45, 0·49, 0·48 and 0·51, respectively, and LSC for RHI was 47·2%. CONCLUSIONS CV of RHI in our population was moderate; however, we consider this precision insufficient to monitor changes in individual patients, as they would need to exceed 47% to show a significant change. Further, the poor ICCs reflect the difficulty of detecting treatment effects in homogenous populations, such as patients with stable CAD.
Resumo:
PURPOSE Fundus autofluorescence (AF) is characterized not only by its intensity or excitation and emission spectra but also by the lifetimes of the fluorophores. Fluorescence lifetime is influenced by the fluorophore's microenvironment and may provide information about the metabolic tissue state. We report quantitative and qualitative autofluorescence lifetime imaging of the ocular fundus in mice. METHODS A fluorescence lifetime imaging ophthalmoscope (FLIO) was used to measure fluorescence lifetimes of endogenous fluorophores in the murine retina. FLIO imaging was performed in 1-month-old C57BL/6, BALB/c, and C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. Measurements were repeated at monthly intervals over the course of 6 months. For correlation with structural changes, an optical coherence tomogram was acquired. RESULTS Fundus autofluorescence lifetime images were readily obtained in all mice. In the short spectral channel (498-560 nm), mean ± SEM AF lifetimes were 956 ± 15 picoseconds (ps) in C57BL/6; 801 ± 35 ps in BALB/c mice; and 882 ± 37 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. In the long spectral channel (560-720 nm), mean ± SEM AF lifetimes were 298 ± 14 ps in C57BL/6 mice, 241 ± 10 ps in BALB/c mice, and 288 ± 8 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. There was a general decrease in mean AF lifetimes with age. CONCLUSIONS Although fluorescence lifetime values differ among mouse strains, we found little variance within the groups. Fundus autofluorescence lifetime imaging in mice may provide additional information for understanding retinal disease processes and may facilitate monitoring of therapeutic effects in preclinical studies.
Resumo:
OBJECTIVE: To evaluate the incidence of colic and risk factors for colic in equids hospitalized for ocular disease. DESIGN: Retrospective observational study. Animals-337 equids (317 horses, 19 ponies, and 1 donkey) hospitalized for ocular disease. PROCEDURES: Medical records of equids hospitalized for > 24 hours for treatment of ocular disease between January 1997 and December 2008 were reviewed. Information from only the first hospitalization was used for equids that were hospitalized for ocular disease on more than 1 occasion. Information gathered included the signalment, the type of ocular lesion and the treatment administered, and any colic signs recorded during hospitalization as well as the severity, presumptive diagnosis, and treatment of the colic. Statistical analysis was used to identify any risk factors for colic in equids hospitalized for ocular disease. RESULTS: 72 of 337 (21.4%) equids hospitalized for ocular disease had signs of colic during hospitalization. Most equids (59.7% [43/72]) had mild signs of colic, and most (87.5% [63/72]) were treated medically. Ten of 72 (13.9%) equids with colic had a cecal impaction. Risk factors for colic in equids hospitalized for ocular disease were age (0 to 1 year and ≥ 21 years) and an increased duration of hospitalization (≥ 8 days). CONCLUSIONS AND CLINICAL RELEVANCE: There was a high incidence of colic in equids hospitalized with ocular disease in this study. Findings from this study may help identify equids at risk for development of colic and thereby help direct implementation of prophylactic measures.
Resumo:
We observed a hereditary phenotype in Alaskan Huskies, which was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier and an unrelated control revealed a 218 bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1 deficient mice have a much milder phenotype than either humans or dogs. Thus the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the non-intentional breeding of affected dogs.
Resumo:
Video-oculography devices are now used to quantify the vestibulo-ocular reflex (VOR) at the bedside using the head impulse test (HIT). Little is known about the impact of disruptive phenomena (e.g. corrective saccades, nystagmus, fixation losses, eye-blink artifacts) on quantitative VOR assessment in acute vertigo. This study systematically characterized the frequency, nature, and impact of artifacts on HIT VOR measures. From a prospective study of 26 patients with acute vestibular syndrome (16 vestibular neuritis, 10 stroke), we classified findings using a structured coding manual. Of 1,358 individual HIT traces, 72% had abnormal disruptive saccades, 44% had at least one artifact, and 42% were uninterpretable. Physicians using quantitative recording devices to measure head impulse VOR responses for clinical diagnosis should be aware of the potential impact of disruptive eye movements and measurement artifacts.
Resumo:
BACKGROUND Low levels of testosterone in men and changes in retinal microvascular calibre are both associated with hypertension and cardiovascular disease risk. Sex hormones are also associated with blood flow in microvascular beds which might be a key intermediate mechanism in the development of hypertension. Whether a direct association between endogenous testosterone and retinal microvascular calibre exists is currently unknown. We aimed to determine whether testosterone is independently associated with ocular perfusion via a possible association with retinal vascular calibre or whether it plays only a secondary role via its effect on blood pressure in a bi-ethnic male cohort. PROBANDS AND METHODS A total of 72 black and 81 white men (28-68 years of age) from the follow-up phase of the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study were included in this sub-study. Ambulatory pulse pressure and intraocular perfusion pressures were obtained, while metabolic variables and testosterone were measured from fasting venous blood samples. Retinal vascular calibre was quantified from digital photographs using standardised protocols. RESULTS The black men revealed a poorer cardiometabolic profile and higher pulsatile pressure (>50 mm Hg), intraocular pressure and diastolic ocular perfusion pressure than the white men (p≤0.05). Only in the white men was free testosterone positively associated with retinal calibre, i.e. arterio-venular ratio and central retinal arterial calibre and inversely with central retinal venular calibre. These associations were not found in the black men, independent of whether pulse pressure and ocular perfusion pressure were part of the model. CONCLUSIONS These results suggest an independent, protective effect of testosterone on the retinal vasculature where an apparent vasodilatory response in the retinal resistance microvessels was observed in white men.
Resumo:
Recently, ocular vestibular evoked myogenic potentials (oVEMP) have emerged as a tool for assessment of utricular function. They are short-latency myogenic potentials which can be elicited in response to vestibular stimulation, e.g. by air-conducted sound (ACS) or bone-conducted vibration (BCV) (reviewed in (Kantner and Gurkov, 2012)). Otolithic afferent neurons trigger reflexive electromyographic activity of the extraocular muscles which can be recorded beneath the eye contralateral to the stimulated ear by use of surface electrodes.