994 resultados para Terminazione forzata, Flight Termination System, FTS, APR
Resumo:
Use of propulsion systems that couple electyrodynamic tethers to ion thrusters, as suggested in the literature, is discussed. The system establishes electrical contact with the ionospheric plasma, at the anodic end of the tether, by ejecting ions instead of collecting electrons; also, the ion thruster adds its thrust to the Lorentz force on the tether. In this paper, we analyze the performance of this coupled system, as measured by the ratio of mission impulse (thrust times mission duration) to the overall system mass, which includes the power subsystem mass, the tether subsystem mass, and the propellant mass consumed in the ion thruster. It is shown that a tether acting by itself, collecting electrons at its anodic end, substantially outperforms the coupled system for times longer than a characteristic time of the ion thruster, for which propellant mass equals the power subsystem mass; for shorter times performances are shown to be similar.
Resumo:
Relatively short electrodynamic tethers can extract orbital energy to "push" against a planetary magnetic field to achieve propulsion without the expenditure of propellant. The Propulsive Small Expendable Deployer System experiment will use the flight-proven Small Expendable Deployer System to deploy a 5-km bare aluminum tether from a Delta II upper stage to achieve ~0.4-N drag thrust, thus lowering the altitude of the stage. The experiment will use a predominantly bare tether for current collection in lieu of the endmass collector and insulated tether used on previous missions. The flight experiment is a precursor to a more ambitious electrodynamic tether upper-stage demonstration mission that will be capable of orbit-raising,lowering, and inclination changes, all using electrodynamic thrust. The expected performance of the tether propulsion system during the experiment is described.
Resumo:
In the SESAR Step 2 concept of operations a RBT is available and seen by all making it possible to conceive a different operating method than the current ATM system based on Collaborative Decisions Making processes. Currently there is a need to describe in more detail the mechanisms by which actors (ATC, Network Management, Flight Crew, airports and Airline Operation Centre) will negotiate revisions to the RBT. This paper introduces a negotiation model, which uses constraint based programing applied to a mediator to facilitate negotiation process in a SWIM enabled environment. Three processes for modelling the negotiation process are explained as well a preliminary reasoning agent algorithm modelled with constraint satisfaction problem is presented. Computational capability of the model is evaluated in the conclusion.
Resumo:
El principal objetivo de la tesis es estudiar el acoplamiento entre los subsistemas de control de actitud y de control térmico de un pequeño satélite, con el fin de buscar la solución a los problemas relacionados con la determinación de los parámetros de diseño. Se considera la evolución de la actitud y de las temperaturas del satélite bajo la influencia de dos estrategias de orientación diferentes: 1) estabilización magnética pasiva de la orientación (PMAS, passive magnetic attitude stabilization), y 2) control de actitud magnético activo (AMAC, active magnetic attitude control). En primer lugar se presenta el modelo matemático del problema, que incluye la dinámica rotacional y el modelo térmico. En el problema térmico se considera un satélite cúbico modelizado por medio de siete nodos (seis externos y uno interno) aplicando la ecuación del balance térmico. Una vez establecido el modelo matemático del problema, se estudia la evolución que corresponde a las dos estrategias mencionadas. La estrategia PMAS se ha seleccionado por su simplicidad, fiabilidad, bajo coste, ahorrando consumo de potencia, masa coste y complejidad, comparado con otras estrategias. Se ha considerado otra estrategia de control que consigue que el satélite gire a una velocidad requerida alrededor de un eje deseado de giro, pudiendo controlar su dirección en un sistema inercial de referencia, ya que frecuentemente el subsistema térmico establece requisitos de giro alrededor de un eje del satélite orientado en una dirección perpendicular a la radiación solar incidente. En relación con el problema térmico, para estudiar la influencia de la velocidad de giro en la evolución de las temperaturas en diversos puntos del satélite, se ha empleado un modelo térmico linealizado, obtenido a partir de la formulación no lineal aplicando un método de perturbaciones. El resultado del estudio muestra que el tiempo de estabilización de la temperatura y la influencia de las cargas periódicas externas disminuye cuando aumenta la velocidad de giro. Los cambios de temperatura se reducen hasta ser muy pequeños para velocidades de rotación altas. En relación con la estrategia PMAC se ha observado que a pesar de su uso extendido entre los micro y nano satélites todavía presenta problemas que resolver. Estos problemas están relacionados con el dimensionamiento de los parámetros del sistema y la predicción del funcionamiento en órbita. Los problemas aparecen debido a la dificultad en la determinación de las características magnéticas de los cuerpos ferromagnéticos (varillas de histéresis) que se utilizan como amortiguadores de oscilaciones en los satélites. Para estudiar este problema se presenta un modelo analítico que permite estimar la eficiencia del amortiguamiento, y que se ha aplicado al estudio del comportamiento en vuelo de varios satélites, y que se ha empleado para comparar los resultados del modelo con los obtenidos en vuelo, observándose que el modelo permite explicar satisfactoriamente el comportamiento registrado. ABSTRACT The main objective of this thesis is to study the coupling between the attitude control and thermal control subsystems of a small satellite, and address the solution to some existing issues concerning the determination of their parameters. Through the thesis the attitude and temperature evolution of the satellite is studied under the influence of two independent attitude stabilization and control strategies: (1) passive magnetic attitude stabilization (PMAS), and (2) active magnetic attitude control (AMAC). In this regard the mathematical model of the problem is explained and presented. The mathematical model includes both the rotational dynamics and the thermal model. The thermal model is derived for a cubic satellite by solving the heat balance equation for 6 external and 1 internal nodes. Once established the mathematical model of the problem, the above mentioned attitude strategies were applied to the system and the temperature evolution of the 7 nodes of the satellite was studied. The PMAS technique has been selected to be studied due to its prevalent use, simplicity, reliability, and cost, as this strategy significantly saves the overall power, weight, cost, and reduces the complexity of the system compared to other attitude control strategies. In addition to that, another control law that provides the satellite with a desired spin rate along a desired axis of the satellite, whose direction can be controlled with respect to the inertial reference frame is considered, as the thermal subsystem of a satellite usually demands a spin requirement around an axis of the satellite which is positioned perpendicular to the direction of the coming solar radiation. Concerning the thermal problem, to study the influence of spin rate on temperature evolution of the satellite a linear approach of the thermal model is used, which is based on perturbation theory applied to the nonlinear differential equations of the thermal model of a spacecraft moving in a closed orbit. The results of this study showed that the temperature stabilization time and the periodic influence of the external thermal loads decreases by increasing the spin rate. However, the changes become insignificant for higher values of spin rate. Concerning the PMAS strategy, it was observed that in spite of its extended application to micro and nano satellites, still there are some issues to be solved regarding this strategy. These issues are related to the sizing of its system parameters and predicting the in-orbit performance. The problems were found to be rooted in the difficulties that exist in determining the magnetic characteristics of the ferromagnetic bodies (hysteresis rods) that are applied as damping devices on-board satellites. To address these issues an analytic model for estimating their damping efficiency is proposed and applied to several existing satellites in order to compare the results with their respective in-flight data. This model can explain the behavior showed by these satellites.
Resumo:
The thermal design of stratospheric balloon payloads usually focuses on the cruise phase of the missions, that is, the floating altitude conditions. The ascent phase usually takes between 2 and 4 h, a very small period compared to the duration of the whole mission, which can last up to 4 weeks. However, during this phase payloads are subjected to very harsh conditions due mainly to the convective cooling that occurs as the balloon passes through the cold atmosphere, with minimum temperatures in the tropopause. The aim of this work is to study the thermal behaviour of a payload carried by a long duration balloon during the ascent phase. Its temperature has been calculated as a function of the altitude from sea level to floating conditions. To perform this analysis it has been assumed that the thermal interactions (convection and radiation) depend on the altitude, on the environmental conditions (which in turn depend also on the altitude) and on the temperature of the system itself. The results have been compared with the measurements taken during the SUNRISE test flight, launched in October 2007 by CSBF from Fort Sumner (New Mexico).
Resumo:
During the process of design and development of an autonomous Multi-UAV System, two main problems appear. The first one is the difficulty of designing all the modules and behaviors of the aerial multi-robot system. The second one is the difficulty of having an autonomous prototype of the system for the developers that allows to test the performance of each module even in an early stage of the project. These two problems motivate this paper. A multipurpose system architecture for autonomous multi-UAV platforms is presented. This versatile system architecture can be used by the system designers as a template when developing their own systems. The proposed system architecture is general enough to be used in a wide range of applications, as demonstrated in the paper. This system architecture aims to be a reference for all designers. Additionally, to allow for the fast prototyping of autonomous multi-aerial systems, an Open Source framework based on the previously defined system architecture is introduced. It allows developers to have a flight proven multi-aerial system ready to use, so that they can test their algorithms even in an early stage of the project. The implementation of this framework, introduced in the paper with the name of “CVG Quadrotor Swarm”, which has also the advantages of being modular and compatible with different aerial platforms, can be found at https://github.com/Vision4UAV/cvg_quadrotor_swarm with a consistent catalog of available modules. The good performance of this framework is demonstrated in the paper by choosing a basic instance of it and carrying out simulation and experimental tests whose results are summarized and discussed in this paper.
Resumo:
The theory of stochastic transcription termination based on free-energy competition [von Hippel, P. H. & Yager, T. D. (1992) Science 255, 809–812 and von Hippel, P. H. & Yager, T. D. (1991) Proc. Natl. Acad. Sci. USA 88, 2307–2311] requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this balancing should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle, but do find many troubling inconsistencies, most notably, anomalous memory effects. These effects suggest that termination has a deterministic component and may conceivably not be stochastic at all. We find that a key experiment by Wilson and von Hippel [Wilson, K. S. & von Hippel, P. H. (1994) J. Mol. Biol. 244, 36–51] thought to demonstrate stochastic termination was an incorrectly analyzed regulatory effect of Mg2+ binding.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) time of flight mass spectrometry was used to detect and order DNA fragments generated by Sanger dideoxy cycle sequencing. This was accomplished by improving the sensitivity and resolution of the MALDI method using a delayed ion extraction technique (DE-MALDI). The cycle sequencing chemistry was optimized to produce as much as 100 fmol of each specific dideoxy terminated fragment, generated from extension of a 13-base primer annealed on 40- and 50-base templates. Analysis of the resultant sequencing mixture by DE-MALDI identified the appropriate termination products. The technique provides a new non-gel-based method to sequence DNA which may ultimately have considerable speed advantages over traditional methodologies.
Resumo:
The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Resumo:
In this CEPS Commentary, Daniel Gros turns his attention to the main outstanding problem facing Greece today, namely capital flight. Fearful that the country will leave the euro, depositors are withdrawing cash from their bank accounts – thereby making this event more likely. He outlines a proposal in which outgoing payments from Greek banks in the form of cash or via the TARGET system would be limited to the amount of incoming payments, i.e. revenues from exports or tourism, via an auction system. Greece could remain formally a member of the euro area, but the price for cash withdrawals would encourage depositors to wait and stimulate exports.
Resumo:
This paper discusses the application of the new European rules for burden-sharing and bail-in in the banking sector, in view of their ability to accommodate broader policy goals of aggregate financial stability. It finds that the Treaty principles and the new discipline of state aid and the restructuring of banks provide a solid framework for combating moral hazard and removing incentives that encourage excessive risk-taking by bankers. However, the application of the new rules may have become excessively attentive to the case-by-case evaluation of individual institutions, while perhaps losing sight of the aggregate policy needs of the banking system. Indeed, in this first phase of the banking union, while large segments of the EU banking sector still require a substantial restructuring and recapitalisation, the market may not be able to provide all the needed resources in the current environment of depressed profitability and low growth. Thus, a systemic market failure may be making the problem impossible to fix without resorting to temporary public support. But the risk of large write-offs of capital instruments due to burden-sharing and bail-in may represent an insurmountable obstacle to such public support as it may set in motion an investors’ flight. The paper concludes by showing that existing rules do contain the flexibility required to accommodate aggregate policy requirements in the general interest, and outlines a public support scheme for the precautionary recapitalisation of solvent banks that would be compliant with EU law.
Resumo:
Universität Magdeburg, Dissertation, 2016