1000 resultados para Term
Resumo:
There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 x 10(-4) h(-1) over similar to 1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-alpha and IL-1 beta), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.
Resumo:
Termites, herbivores and fire are recognized as major guilds that structure woody plant communities in African savanna and woodland ecosystems. An understanding of their interaction is crucial to design appropriate management regimes. The aim of this study was to evaluate the long-term impacts of herbivore, fire and termite activities on regeneration of trees. Permanent experimental quadrats were established in 1992 in the Sudanian woodland of Burkina Faso subjected to grazing by livestock and annual early fire and the control. Within the treatment quadrats, an inventory of the woody undergrowth community was conducted on termitaria occupied by Macrotermes subhyalinus, extended termitosphere (within 5 m radius from the mound base) and adjacent area (beyond 5 m from the mound base). Hierarchical analysis was performed to determine significant differences in species richness, abundance and diversity indices among vegetation patches within fire and herbivory treatments. Grazed quadrats had significantly (P < 0.001) more species and stem density of woody undergrowth than non-grazed quadrats but maintained similar level of species richness and stem density of woody undergrowth on termitaria. There were not significant differences (P>0.05) in species richness and stem density between burnt and unburnt quadrats. Termitaria supported a highly diverse woody undergrowth with higher stem density than either the extended termitosphere or rest of quadrats. The density of woody undergrowth was significantly related with mature trees of selected species on termitaria (R-2 = 0.593; P<0.001) than that on the extended termitosphere (R-2 = 0.333; P<0.001) and adjacent area (R-2 = 0.197; P<0.001). It can be concluded that termites facilitate the regeneration of woody species while grazing and annual early fire play a minor role in the regeneration of woody species. The current policy that prohibits grazing should be revised to accommodate the interests of livestock herders. (C) 2014 Elsevier GmbH. All rights reserved.
Resumo:
The goal in the whisper activity detection (WAD) is to find the whispered speech segments in a given noisy recording of whispered speech. Since whispering lacks the periodic glottal excitation, it resembles an unvoiced speech. This noise-like nature of the whispered speech makes WAD a more challenging task compared to a typical voice activity detection (VAD) problem. In this paper, we propose a feature based on the long term variation of the logarithm of the short-time sub-band signal energy for WAD. We also propose an automatic sub-band selection algorithm to maximally discriminate noisy whisper from noise. Experiments with eight noise types in four different signal-to-noise ratio (SNR) conditions show that, for most of the noises, the performance of the proposed WAD scheme is significantly better than that of the existing VAD schemes and whisper detection schemes when used for WAD.
Resumo:
The development of new implantable biomaterials requires bone-mimicking physical properties together with desired biocompatible property. In continuation to our earlier published research to establish compositional dependent multifunctional bone-like properties and cytocompatibility response of hydroxyapatite (HA)-BaTiO3 composites, the toxicological property evaluation, both invitro and invivo, were conducted on HA-40wt% BaTiO3 and reported in this work. In particular, this work reports invitro cytotoxicity of mouse myoblast cells as well as invivo long-term tissue and nanoparticles interaction of intra-articularly injected HA-40wt% BaTiO3 and BaTiO3 up to the concentration of 25mg/mL in physiological saline over 12weeks in mouse model. The careful analysis of flow cytometry results could not reveal any statistically significant difference in terms of early/late apoptotic cells or necrotic cells over 8d in culture. Extensive histological analysis could not record any signature of cellular level toxicity or pronounced inflammatory response in vital organs as well as at knee joints of Balb/c mice after 12weeks. Taken together, this study establishes nontoxic nature of HA-40wt% BaTiO3 and therefore, HA-40wt% BaTiO3 can be used safely for various biomedical applications.
Resumo:
Speech polarity detection is a crucial first step in many speech processing techniques. In this paper, an algorithm is proposed that improvises the existing technique using the skewness of the voice source (VS) signal. Here, the integrated linear prediction residual (ILPR) is used as the VS estimate, which is obtained using linear prediction on long-term frames of the low-pass filtered speech signal. This excludes the unvoiced regions from analysis and also reduces the computation. Further, a modified skewness measure is proposed for decision, which also considers the magnitude of the skewness of the ILPR along with its sign. With the detection error rate (DER) as the performance metric, the algorithm is tested on 8 large databases and its performance (DER=0.20%) is found to be comparable to that of the best technique (DER=0.06%) on both clean and noisy speech. Further, the proposed method is found to be ten times faster than the best technique.
Resumo:
Solar geoengineering has been proposed as a potential means to counteract anthropogenic climate change, yet it is unknown how such climate intervention might affect the Earth's climate on the millennial time scale. Here we use the HadCM3L model to conduct a 1000year sunshade geoengineering simulation in which solar irradiance is uniformly reduced by 4% to approximately offset global mean warming from an abrupt quadrupling of atmospheric CO2. During the 1000year period, modeled global climate, including temperature, hydrological cycle, and ocean circulation of the high-CO2 simulation departs substantially from that of the control preindustrial simulation, whereas the climate of the geoengineering simulation remains much closer to that of the preindustrial state with little drift. The results of our study do not support the hypothesis that nonlinearities in the climate system would cause substantial drift in the climate system if solar geoengineering was to be deployed on the timescale of a millennium.
Resumo:
Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day-night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucrose in the dark. These data suggest that there is a feedback between the molecular components that comprise the circadian oscillator and plant metabolism, with the circadian clock both regulating and being regulated by metabolism. We used also simulations within a three-loop mathematical model of the Arabidopsis circadian oscillator to identify components of the circadian clock sensitive to sucrose. The mathematical studies identified GIGANTEA (GI) as being associated with sucrose sensing. Experimental validation of this prediction demonstrated that GI is required for the full response of the circadian clock to sucrose. We demonstrate that GI acts as part of the sucrose-signaling network and propose this role permits metabolic input into circadian timing in Arabidopsis.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.
Resumo:
In this paper we analyse the behaviour of the EU market for CO2 emission allowances; specifically, we focus on the contracts maturing in the Kyoto Protocol's second period of application (2008 to 2012). We calibrate the underlying parameters for the allowance price in the long run and we also calibrate those from the Spanish wholesale electricity market. This information is then used to assess the option to install a carbon capture and storage (CCS) unit in a coal-fired power plant. We use a two-dimensional binomial lattice where costs and profits are valued and the optimal investment time is determined. In other words, we study the trigger allowance prices above which it is optimal to install the capture unit immediately. We further analyse the impact of several variables on the critical prices, among them allowance price volatility and a hypothetical government subsidy. We conclude that, at current permit prices, from a financial point of view, immediate installation does not seem justified. This need not be the case, though, if carbon market parameters change dramatically and/or a specific policy to promote these units is adopted.
Resumo:
An economic expert working group (STECF/SGBRE-07-05) was convened in 2007 for evaluating the potential economic consequences of a Long-Term Management Plan for the northern hake. Analyzing all the scenarios proposed by biological assessment, they found that keeping the F in the status quo level was the best policy in terms of net present values for both yield and profits. This result is counter intuitive because it may indicate that effort costs do no affect the economic reference points. However, it is well accepted that the inclusion of costs affects negatively the economic reference points. In this paper, applying a dynamic agestructured model to the northern hake, we show that the optimal fishing mortality that maximizes the net present value of profits is lower than Fmax.