495 resultados para Terence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A geometrical force balance that links stresses to ice bed coupling along a flow band of an ice sheet was developed in 1988 for longitudinal tension in ice streams and published 4 years later. It remains a work in progress. Now gravitational forces balanced by forces producing tensile, compressive, basal shear, and side shear stresses are all linked to ice bed coupling by the floating fraction phi of ice that produces the concave surface of ice streams. These lead inexorably to a simple formula showing how phi varies along these flow bands where surface and bed topography are known: phi = h(O)/h(I) with h(O) being ice thickness h(I) at x = 0 for x horizontal and positive upslope from grounded ice margins. This captures the basic fact in glaciology: the height of ice depends on how strongly ice couples to the bed. It shows how far a high convex ice sheet (phi = 0) has gone in collapsing into a low flat ice shelf (phi = 1). Here phi captures ice bed coupling under an ice stream and h(O) captures ice bed coupling beyond ice streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry's (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry's (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravity wants to pull an ice sheet to the center of the Earth, but cannot because the Earth's crust is in the way, so ice is pushed out sideways instead. Or is it? The ice sheet "sees" nothing preventing it from spreading out except air, which is much less massive than ice. Therefore, does not ice rush forward to fill this relative vacuum; does not the relative vacuum suck ice into it, because Nature abhors a vacuum? If so, the ice sheet is not only pulled downward by gravity, it is also pulled outward by the relative vacuum. This pulling outward will be most rapid where the ice sheet encounters least resistance. The least resistance exists along the bed of ice streams, where ice-bed coupling is reduced by a basal water layer, especially if the ice stream becomes afloat and the floating part is relatively unconfined around its perimeter and unpinned to the sea floor. Ice streams are therefore fast currents of ice that develop near the margins of an ice sheet where these conditions exist. Because of these conditions, ice streams pull ice out of ice sheets and have pulling power equal to the longitudinal gravitational pulling force multiplied by the ice-stream velocity. These boundary conditions beneath and beyond ice streams can be quantified by a basal buoyancy factor that provides a life-cycle classification of ice streams into inception, growth, mature, declining and terminal stages, during which ice streams disintegrate the ice sheet. Surface profiles of ice streams are diagnostic of the stage in a life cycle and, hence, of the vitality of the ice sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jakobshavns Isbrae (69 degrees 10'N, 49 degrees 5'W) drains about 6.5% of the Greenland ice sheet and is the fastest ice stream known. The Jakobshavns Isbrae basin of about 10 000 km(2) was mapped photogrammetrically from four sets of aerial photography, two taken in July 1985 and two in July 1986. Positions and elevations of several hundred natural features on the ice surface were determined for each epoch by photogrammetric block-aerial triangulation, and surface velocity vectors were computed from the positions. The two flights in 1985 yielded the best results and provided most common points (716) for velocity determinations and are therefore used in the modeling studies. The data from these irregularly spaced points were used to calculate ice elevations and velocity vectors at uniformly spaced grid paints 3 km apart by interpolation. The field of surface strain rates was then calculated from these gridded data and used to compute the field of surface deviatoric stresses, using the flow law of ice, for rectilinear coordinates, X, Y pointing eastward and northward. and curvilinear coordinates, L, T pointing longitudinally and transversely to the changing ice-flow direction. Ice-surface elevations and slopes were then used to calculate ice thicknesses and the fraction of the ice velocity due to basal sliding. Our calculated ice thicknesses are in fair agreement with an ice-thickness map based on seismic sounding and supplied to us by K. Echelmeyer. Ice thicknesses were subtracted from measured ice-surface elevations to map bed topography. Our calculation shows that basal sliding is significant only in the 10-15 km before Jakobshavns Isbrae becomes afloat in Jakobshavns IsfJord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sustainability of regional development can be usefully explored through several different lenses. In situations in which uncertainties and change are key features of the ecological landscape and social organization, critical factors for sustainability are resilience, the capacity to cope and adapt, and the conservation of sources of innovation and renewal. However, interventions in social-ecological systems with the aim of altering resilience immediately confront issues of governance. Who decides what should be made resilient to what? For whom is resilience to be managed, and for what purpose? In this paper we draw on the insights from a diverse set of case studies from around the world in which members of the Resilience Alliance have observed or engaged with sustainability problems at regional scales. Our central question is: How do certain attributes of governance function in society to enhance the capacity to manage resilience? Three specific propositions were explored: ( 1) participation builds trust, and deliberation leads to the shared understanding needed to mobilize and self-organize; ( 2) polycentric and multilayered institutions improve the fit between knowledge, action, and social-ecological contexts in ways that allow societies to respond more adaptively at appropriate levels; and ( 3) accountable authorities that also pursue just distributions of benefits and involuntary risks enhance the adaptive capacity of vulnerable groups and society as a whole. Some support was found for parts of all three propositions. In exploring the sustainability of regional social-ecological systems, we are usually faced with a set of ecosystem goods and services that interact with a collection of users with different technologies, interests, and levels of power. In this situation in our roles as analysts, facilitators, change agents, or stakeholders, we not only need to ask: The resilience of what, to what? We must also ask: For whom?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A geometrical force balance that links stresses to ice bed coupling along a flow band of an ice sheet was developed in 1988 for longitudinal tension in ice streams and published 4 years later. It remains a work in progress. Now gravitational forces balanced by forces producing tensile, compressive, basal shear, and side shear stresses are all linked to ice bed coupling by the floating fraction phi of ice that produces the concave surface of ice streams. These lead inexorably to a simple formula showing how phi varies along these flow bands where surface and bed topography are known: phi = h(O)/h(I) with h(O) being ice thickness h(I) at x = 0 for x horizontal and positive upslope from grounded ice margins. This captures the basic fact in glaciology: the height of ice depends on how strongly ice couples to the bed. It shows how far a high convex ice sheet (phi = 0) has gone in collapsing into a low flat ice shelf (phi = 1). Here phi captures ice bed coupling under an ice stream and h(O) captures ice bed coupling beyond ice streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice sheet thickness is determined mainly by the strength of ice-bed coupling that controls holistic transitions from slow sheet flow to fast streamflow to buttressing shelf flow. Byrd Glacier has the largest ice drainage system in Antarctica and is the fastest ice stream entering Ross Ice Shelf. In 2004 two large subglacial lakes at the head of Byrd Glacier suddenly drained and increased the terminal ice velocity of Byrd Glacier from 820 m yr(-1) to 900 m yr(-1). This resulted in partial ice-bed recoupling above the lakes and partial decoupling along Byrd Glacier. An attempt to quantify this behavior is made using flowband and flowline models in which the controlling variable for ice height above the bed is the floating fraction phi of ice along the flowband and flowline. Changes in phi before and after drainage are obtained from available data, but more reliable data in the map plane are required before Byrd Glacier can be modeled adequately. A holistic sliding velocity is derived that depends on phi, with contributions from ice shearing over coupled beds and ice stretching over uncoupled beds, as is done in state-of-the-art sliding theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calving has been studied for glaciers ranging from slow polar glaciers that calve on dry land, such as on Deception Island (63.0-degrees-S, 60.6-degrees-W) in Antarctica, through temperate Alaskan tide-water glaciers, to fast outlet glaciers that float in fiords and calve in deep water, such as Jakobshavns Isbrae (69.2-degrees-N, 49.9-degrees-W) in Greenland. Calving from grounded ice walls and floating ice shelves is the main ablation mechanism for the Antarctic and Greenland ice sheets, as it was along marine and lacustrine margins of former Pleistocene ice sheets, and is for tide-water and polar glaciers. Yet, the theory of ice calving is underdeveloped because of inherent dangers in obtaining field data to test and constrain calving models. An attempt is made to develop a calving theory for ice walls grounded in water of variable depth, and to relate slab calving from ice walls to tabular calving from ice shelves. A calving law is derived in which calving rates from ice walls are controled by bending creep behind the ice wall, and depend on wall height h, forward bending angle-theta, crevasse distance c behind the ice wall and depth d of water in front of the ice wall. Reasonable agreement with calving rates reported by Brown and others (1982) for Alaskan tide-water glaciers is obtained when c depends on wall height, wall height above water and water depth. More data are needed to determine which of these dependencies is correct. A calving ratio c/h is introduced to understand the transition from slab calving to tabular calving as water deepens and the calving glacier becomes afloat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal convection in the Antarctic and Greenland ice sheets has been dismissed on the grounds that radio-echo stratigraphy is undisturbed for long distances. However, the undisturbed stratigraphy lies, for the most part, above the density inversion in polar ice sheets and therefore does not disprove convection. An echo-free zone is widespread below the density inversion, yet nobody has cited this as a strong indication that convection is indeed present at d�pth. A generalized Rayleigh criterion for thermal convection in e1astic-viscoplastic polycrystalline solids heated from below is developed and applied to ice-sheet convection. An infinite Rayleigh number at the onset of primary creep decreases with time and becomes constant when secondary creep dominates, suggesting that any thermal buoyancy stress can initiate convection but convection cannot be sustained below a buoyancy stress of about 3 kPa. An analysis of the temperature profile down the Byrd Station core hole suggests that about 1000 m of ice below the density inversion will sustain convection. Creep along the Byrd Station strain network, radar sounding in East Antarctica, and seismic sounding in West Antarctica are examined for evidence of convective creep superimposed on advective creep. It is concluded that the evidence for convection is there, if we look for it with the intention offinding it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paleoglaciological concept that during the Pleistocene glacial hemi-cycles a super-large, structurally complex ice sheet developed in the Arctic and behaved as a single dynamic system, as the Antarctic ice sheet does today, has not yet been subjected to concerted studies designed to test the predictions of this concept. Yet, it may hold the keys to solutions of major problems of paleoglaciology, to understanding climate and sea-level changes. The Russian Arctic is the least-known region exposed to paleoglaciation by a hypothetical Arctic ice sheet but now it is more open to testing the concept. Implementation of these tests is a challenging task, as the region is extensive and the available data are controversial. Well-planned and coordinated field projects are needed today, as well as broad discussion of the known evidence, existing interpretations and new field results. Here we present the known evidence for paleoglaciation of the Russian Arctic continental shelf and reconstruct possible marine ice sheets that could have produced that evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Byrd Glacier has one of the largest ice catchment areas in Antarctica, delivers more ice to the Ross Ice Shelf than any other ice stream, and is the fastest of these ice streams. A force balance, combined with a mass balance, demonstrates that stream flow in Byrd Glacier is transitional from sheet flow in East Antarctica to shelf flow in the Ross Ice Shelf. The longitudinal pulling stress, calculated along an ice flowband from the force balance, is linked to variations of ice thickness, to the ratio of the basal water pressure to the ice overburden pressure where Byrd Glacier is grounded, and is reduced by an ice-shelf buttressing stress where Byrd Glacier is floating. Longitudinal tension peaks at pressure-ratio maxima in grounded ice and close to minima in the ratio of the pulling stress to the buttressing stress in floating ice. The longitudinal spacing of these tension peaks is rather uniform and, for grounded ice, the peaks occur at maxima in surface slope that have no clear relation to the bed slope. This implies that the maxima in surface slope constitute a "wave train" that is related to regular variations in ice-bed coupling, not primarily to bed topography. It is unclear whether these surface "waves" are "standing waves" or are migrating either upslope or downslope, possibly causing the grounding line to either retreat or advance. Deciding which is the case will require obtaining bed topography in the map plane, a new map of surface topography, and more sophisticated modeling that includes ice flow linked to subglacial hydrology in the map plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The floating terminal of Jakobshavn Isbr ae, the fastest Greenland ice stream, has disintegrated since 2002, resulting in a doubling of ice velocity and rapidly lowering inland ice elevations. Conditions prior to disintegration were modeled using control theory in a plane-stress solution, and the Missoula model of ice-shelf flow. Both approaches pointed to a mechanism that inhibits ice flow and that is not captured by either approach. Jamming of flow, an inherent property of granular materials passing through a constriction (Jakobshavn Isfjord), is postulated as the mechanism. Rapid disintegration of heavily crevassed floating ice accompanies break-up of the ice jam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mass balance calculation was made for the floating part of Byrd Glacier, using 1978-79 ice elevation and velocity data, over the 45 km of Byrd Glacier from its grounding line to where it leaves its fjord and merges with the Ross Ice Shelf. Smoothed basal melting rates were relatively uniform over this distance and averaged 12 +/- 2 m yr(-1).