916 resultados para TYROSINE KINASE INHIBITORS
Resumo:
c-Src, a protein tyrosine kinase (PTK) the specific activity of which is increased $>$20-fold in $\sim$80% of colon tumors and colon tumor cell lines, plays a role in both growth regulation and tumorigenicity of colon tumor cells. To examine the effect of increased c-Src specific activity on colon tumor cells, coumarin-derived tyrosine analog PTK inhibitors were assessed in a standard colon tumor cell line, HT-29. Of the nine compounds tested for inhibiting c-Src activity in a standard immune complex kinase assay from c-Src precipitated from HT-29 cells, the 7,8-dihydroxy-containing compounds daphnetin and fraxetin were most effective, with IC$\sb{50}$s of 0.6 $\pm$ 0.2 mM and 0.6 $\pm$ 0.3 mM, respectively. Treatment of HT-29 cells with daphnetin resulted in inhibition of cell growth in a dose-dependent manner. In contrast, scopoletin, a relatively poor Src inhibitor in vitro, did not inhibit HT-29 cell growth in the concentration range tested. In daphnetin treated cells, a dose-dependent decrease of c-Src activity paralleling cell growth inhibition was also observed; the IC$\sb{50}$ was 0.3 $\pm$ 0.1 mM for c-Src autophosphorylation. In contrast, the IC$\sb{50}$ for c-Src protein level was $>$ 0.6 mM, indicating that the effects of daphnetin were primarily an enzymatic activity of c-Src, rather than protein level in HT-29 cells. These results are the first to demonstrate that c-Src specific activity regulates colon tumor cell growth.^ To elucidate the signaling pathways activated by c-Src in colon tumor cells, the Src family substrate FAK, which has been shown to play a role in both extracellular matrix-dependent cell growth and survival, was examined. Coprecipitation assays showed Src-FAK association in detergent insoluble fractions of both attached and detached HT-29 cells, indicating that Src-FAK association in HT-29 cells is stable and, unlike untransformed cells, not dependent on cell-substratum contact. FAK also coprecipitated with Grb2, an adaptor protein also playing a role in cell proliferation and survival, in both attached and detached HT-29 cells, suggesting that a Src-FAK-Grb2-mediated signaling pathway(s) in HT-29 cells is/are constitutively activated.^ FAK was also analyzed in c-src antisense HT-29 clones AS15 and AS33 in which c-Src is specifically reduced by transfection of an antisense expression vector. FAK protein level is unexpectedly decreased in both AS15 and AS33 cells by 5-fold and 1.5-fold compared to HT-29, respectively, corresponding with the decreased expression of c-Src observed in these cells. FAK protein level was not decreased compared to parental in the c-src "sense" clone S8. Northern blot analyses showed decreased FAK mRNA levels compared to parental in AS15 and AS33, correlating with decreased FAK protein level, indicating that FAK activity in the antisense cells is regulated, at least in part, by altering FAK expression, and that this regulation is Src dependent. Because FAK has been implicated in anoikis, the ability of c-src antisense cells to survive in the absence of cell-substratum contact was examined. Decreased cell survival is seen in both AS15 and AS33, correlating with the decreases in c-Src and FAK levels and tumorigenicity in these cells. These results suggest that at least one mechanism by which activation of c-Src contributes to tumorigenic phenotype of colon tumor cells is by aberrantly promoting a survival signal through unregulated Src-FAK-Grb2 complexes. (Abstract shortened by UMI.) ^
Resumo:
Overexpression of c-erbB-2 gene-encoded p185 has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. To investigate whether overexpression of c-erbB-2 can enhance metastatic potential of human breast cancer cells, we compared the metastatic phenotypes of the parental MDA-MB-435 cells and the c-erbB-2 gene transfected 435.eB cells. In vivo experimental metastasis assays demonstrated that mice injected erbB2-overexpressing 435.eB transfectants formed significantly more metastatic tumors than the mice injected with parental and control cells. The changes in metastatic potential in vivo were accompanied by increased invasiveness in vitro . The transfectants and the parental cells all had similar growth rates and transformation potential. These findings suggest that c- erbB-2 gene can enhance the intrinsic metastatic potentials of MDA-MB-435 cells without increasing their transformation abilities. ^ Homophilic adhesion may affect invasive and metastatic potential of tumor cells. We found that Heregulin-β1 (HRG-β1), a growth factor that activates receptor kinases erbB3 and erbB4, can enhance aggregation of MCF-7 and SKBR3 human breast cancer cells. While investigating the downstream signals involved in HRG-β1-increased cell aggregation, we observed that HRG-β1 increased the kinase activities of extracellular signal-regulated protein kinase (ERK) and PI3K in these cells. By using different kinase inhibitors, we found that the HRG-β1-activated MEK1-ERK pathway has no demonstrable role in the induction of cell aggregation, whereas HRG-β1-activated PI3K is required for enhancing breast cancer cell aggregation. These results have provided one mechanism by which HRG-β1-activated signaling of erbB receptors may affect invasive/metastatic properties of breast cancer cells. ^ To identify the structural motifs within the erbB2 receptor that are required for erbB2 increased metastatic potential in breast cancer cells, we injected different forms of mutated erbB2 expressing MDA-MB-435 cell line transfectants with or without the EGF-like domain of heregulin-β1 protein (HRG/egf) into ICR-SCID mice to test the metastatic survival rate. The results show that an intact kinase domain of erbB2 receptor is required for erbB2 enhanced metastatic potential in these cells. The C-terminal tyrosine 1248 residue of erbB2 may also play a role in enhancing metastatic potential. Moreover, the results suggest that HRG/egf promote the metastatic potential of human breast cancer cells in vivo. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
β2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of β2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4+ T cell lines obtained from healthy donors and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in β2 integrin (CD18)-positive but not in β2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation of the 125-kDa protein but not other proteins in β2-integrin-positive T cells. Likewise, a β2 integrin (CD18) antibody selectively inhibits induction of the 125-kDa phosphotyrosine protein, whereas cytokine-mediated tyrosine phosphorylation of other proteins is largely unaffected. Immunoprecipitation experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in β2-integrin-positive but not in β2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fakB-tyrosine phosphorylation in β2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125FAK. In conclusion, our data indicate that IL-2 induces β2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB.
Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action
Resumo:
The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance.
Resumo:
Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15INK4B blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27kip-1 blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of β transforming growth factor (TGFβ) in serum-free medium decreased levels of p15INK4B and increased colony formation and retroviral-mediated transduction of primary human CD34+ cells. Although TGFβ neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27kip-1 coupled with TGFβ-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFβ, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.
Resumo:
Hemodynamic abnormalities have been implicated in the pathogenesis of the increased glomerular permeability to protein of diabetic and other glomerulopathies. Vascular permeability factor (VPF) is one of the most powerful promoters of vascular permeability. We studied the effect of stretch on VPF production by human mesangial cells and the intracellular signaling pathways involved. The application of mechanical stretch (elongation 10%) for 6 h induced a 2.4-fold increase over control in the VPF mRNA level (P < 0.05). There was a corresponding 3-fold increase in VPF protein level by 12 h (P < 0.001), returning to the baseline by 24 h. Stretch-induced VPF secretion was partially prevented both by the protein kinase C (PKC) inhibitor H7 (50 μM: 72% inhibition, P < 0.05) and by pretreatment with phorbol ester (phorbol-12-myristate-13 acetate 10−7 M: 77% inhibition, P < 0.05). A variety of protein tyrosine kinase (PTK) inhibitors, genistein (20 μg/ml), herbimycin A (3.4 μM), and a specific pp60src peptide inhibitor (21 μM) also significantly reduced, but did not entirely prevent, stretch-induced VPF protein secretion (respectively 63%, 80%, and 75% inhibition; P < 0.05 for all). The combination of both PKC and PTK inhibition completely abolished the VPF response to mechanical stretch (100% inhibition, P < 0.05). Stretch induces VPF gene expression and protein secretion in human mesangial cells via PKC- and PTK-dependent mechanisms.
Resumo:
The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.
Resumo:
The rat fibroblast NRK cells are transformed reversibly by a combination of growth factors. When stimulated with serum, NRK cells rely on cyclin-dependent kinase 4 (Cdk4) for their S phase entry. However, when stimulated with serum containing oncogenic growth factors, they come to rely on either Cdk4 or Cdk6, and their S phase entry cannot be blocked unless both Cdk4 and Cdk6 are immunodepleted. Such change of dependence does not occur in the NRK cell mutants defective in an oncogenic signal pathway and, therefore, deficient in anchorage-independent cell cycle start ability, correlating Cdk6 dependence with this remarkable, cancer-associated phenotype. However, both Cdk4 and Cdk6 are activated upon serum stimulation, and neither the amounts of Cdk6, Cdk4, cyclin D1, and cyclin-dependent kinase inhibitors nor the activities or subcellular localization of Cdk6 and Cdk4 are significantly influenced by oncogenic stimulation. Thus, oncogenic stimulation invokes Cdk6 to participate in a critical step of the cell cycle start in a rat fibroblast, but by a mechanism seemingly unrelated to the regulation of the kinase. Given that many hematopoietic cells employ predominantly Cdk6 for the cell cycle start and perform anchorage-independent growth by nature, our results raise the possibility that the oncogenic stimulation-induced anchorage-independent cell cycle start of NRK is elicited by a mechanism similar to the one used for hematopoietic cell proliferation.
Resumo:
c-Abl is a ubiquitously expressed protein tyrosine kinase activated by DNA damage and implicated in two responses: cell cycle arrest and apoptosis. The downstream pathways by which c-Abl induces these responses remain unclear. We examined the effect of overexpression of c-Abl on the activation of mitogen-activated protein kinase pathways and found that overexpression of c-Abl selectively stimulated p38, while having no effect on c-Jun N-terminal kinase or on extracellular signal-regulated kinase. c-Abl-induced p38 activation was primarily mediated by mitogen-activated protein kinase kinase (MKK)6. A C-terminal truncation mutant of c-Abl showed no activity for stimulating p38 and MKK6, while a kinase-deficient c-Abl mutant still retained a residual activity. We tested different forms of c-Abl for their ability to induce apoptosis and found that apoptosis induction correlated with the activation of the MKK6-p38 kinase pathway. Importantly, dominant-negative MKK6, but not dominant-negative MKK3 or p38, blocked c-Abl-induced apoptosis. Because overexpression of p38 blocks cell cycle G1/S transition, we also tested whether the MKK6-p38 pathway is required for c-Abl-induced cell cycle arrest, and we found that neither MKK6 nor p38 dominant-negative mutants could relieve c-Abl-induced cell cycle arrest. Finally, DNA damage-induced MKK6 and p38 activation was diminished in c-Abl null fibroblasts. Our study suggests that c-Abl is required for DNA damage-induced MKK6 and p38 activation, and that activation of MKK6 by c-Abl is required for c-Abl-induced apoptosis but not c-Abl-induced cell cycle arrest.
Resumo:
The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.
Resumo:
Tyrosine phosphorylation has been shown to be an important modulator of synaptic transmission in both vertebrates and invertebrates. Such findings hint toward the existence of extracellular ligands capable of activating this widely represented signaling mechanism at or close to the synapse. Examples of such ligands are the peptide growth factors which, on binding, activate receptor tyrosine kinases. To gain insight into the physiological consequences of receptor tyrosine kinase activation in squid giant synapse, a series of growth factors was tested in this preparation. Electrophysiological, pharmacological, and biochemical analysis demonstrated that nerve growth factor (NGF) triggers an acute and specific reduction of the postsynaptic potential amplitude, without affecting the presynaptic spike generation or presynaptic calcium current. The NGF target is localized at a postsynaptic site and involves a new TrkA-like receptor. The squid receptor crossreacts with antibodies generated against mammalian TrkA, is tyrosine phosphorylated in response to NGF stimulation, and is blocked by specific pharmacological inhibitors. The modulation described emphasizes the important role of growth factors on invertebrate synaptic transmission.
Resumo:
Focal adhesion kinase (FAK) is a highly conserved, cytoplasmic tyrosine kinase that has been implicated in promoting cell migration and transmission of antiapoptotic signals in vertebrate cells. In cultured cells, integrin engagement with the extracellular matrix promotes the recruitment of FAK to focal contacts and increases in its phosphotyrosine content and kinase activity, suggesting FAK is an intracellular mediator of integrin signaling. We have identified a Drosophila FAK homolog, DFak56, that is 33% identical to vertebrate FAK, with the highest degree of homology in domains critical for FAK function, including the kinase and focal adhesion targeting domains, and several protein–protein interaction motifs. Furthermore, when expressed in NIH 3T3 cells, DFak56 both localizes to focal contacts and displays the characteristic elevation of phosphotyrosine content in response to plating the cells on fibronectin. During embryogenesis, DFak56 is broadly expressed, and it becomes elevated in the gut and central nervous system at later stages. Consistent with a role in cell migration, we also observe that DFak56 is abundant in the border cells of developing egg chambers before the onset of, and during, their migration.
Resumo:
PIR-A and PIR-B are activating and inhibitory Ig-like receptors on murine B lymphocytes, dendritic cells, and myeloid-lineage cells. The inhibitory function of PIR-B is mediated via its cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, whereas PIR-A pairs with the Fc receptor common γ chain to form an activating receptor complex. In these studies, we observed constitutive tyrosine phosphorylation of PIR-B molecules on macrophages and B lymphocytes, irrespective of the cell activation status. Splenocyte PIR-B molecules were constitutively associated with the SHP-1 protein tyrosine phosphatase and Lyn protein tyrosine kinase. In Lyn-deficient mice, PIR-B tyrosine phosphorylation was greatly reduced. Unexpectedly, tyrosine phosphorylation of PIR-B was not observed in most myeloid and B cell lines but could be induced by ligation of the PIR molecules. Finally, the phosphorylation status of PIR-B was significantly reduced in MHC class I-deficient mice, although not in mice deficient in TAP1 or MHC class II expression. These findings suggest a physiological inhibitory role for PIR-B that is regulated by endogenous MHC class I-like ligands.
Resumo:
Nerve growth factor (NGF) prevents apoptosis through stimulation of the TrkA receptor protein tyrosine kinase. The downstream activation of phosphatidylinositol 3-kinase (PI 3-kinase) is essential for the inhibition of apoptosis, although this enzyme does not bind to and is not directly activated by TrkA. We have found that the addition of NGF to PC-12 cells resulted in the phosphorylation of the Grb2-associated binder-1 (Gab1) docking protein and induced the association of several SH2 domain-containing proteins, including PI 3-kinase. A substantial fraction of the total cellular PI 3-kinase activity was associated with Gab1. PC-12 cells that overexpressed Gab1 show a decreased requirement for the amount of NGF necessary to inhibit apoptosis. The expression of a Gab1 mutant that lacked the binding sites for PI 3-kinase enhanced apoptosis and diminished the protective effect of NGF. Hence, Gab1 has a major role in connecting TrkA with PI 3-kinase activation and for the promotion of cell survival by NGF.