924 resultados para TSALLIS ENTROPY
Resumo:
Trends between the Hammett's sigma(p) and related normal sigma(n)(p), inductive sigma(I), resonance sigma(R), negative sigma(-)(p) and positive sigma(+)(p) polar conjugation and Taft's sigma(o)(p) substituent constants and the N-H center dot center dot center dot O distance, delta(N-H) NMR chemical shift, oxidation potential (E-p/2(ox), measured in this study by cyclic voltammetry (CV)) and thermodynamic parameters (pK, Delta G(0), Delta H-0 and Delta S-0) of the dissociation process of unsubstituted 3-(phenylhydrazo)pentane-2,4-dione (HL1) and its para-substituted chloro (HL2), carboxy (HL3), fluoro (HL4) and nitro (HL5) derivatives were recognized. The best fits were found for sigma(p) and/or sigma(-)(p) in the cases of d(N center dot center dot center dot O), delta(N-H) and E-p/2(ox), showing the importance of resonance and conjugation effects in such properties, whereas for the above thermodynamic properties the inductive effects (sigma(I)) are dominant. HL2 exists in the hydrazo form in DMSO solution and in the solid state and contains an intramolecular H-bond with the N center dot center dot center dot O distance of 2.588(3)angstrom. It was also established that the dissociation process of HL1-5 is non-spontaneous, endothermic and entropically unfavourable, and that the increase in the inductive effect (sigma(I)) of para-substitutents (-H < -Cl < -COOH < -F < -NO2) leads to the corresponding growth of the N center dot center dot center dot O distance and decrease of the pK and of the changes of Gibbs free energy, of enthalpy and of entropy for the HL1-5 acid dissociation process. The electrochemical behaviour of HL1-5 was interpreted using theoretical calculations at the DFT/HF hybrid level, namely in terms of HOMO and LUMO compositions, and of reactivities induced by anodic and cathodic electron-transfers. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper analyzes musical opus from the point of view of two mathematical tools, namely the entropy and the multidimensional scaling (MDS). The Fourier analysis reveals a fractional dynamics, but the time rhythm variations are diluted along the spectrum. The combination of time-window entropy and MDS copes with the time characteristics and is well suited to treat a large volume of data. The experiments focus on a large number of compositions classified along three sets of musical styles, namely “Classical”, “Jazz”, and “Pop & Rock” compositions. Without lack of generality, the present study describes the application of the tools and the sets of musical compositions in a methodology leading to clear conclusions, but extensions to other possibilities are straightforward. The results reveal significant differences in the musical styles, demonstrating the feasibility of the proposed strategy and motivating further developments toward a dynamical analysis of musical compositions.
Resumo:
This paper studies musical opus from the point of view of three mathematical tools: entropy, pseudo phase plane (PPP), and multidimensional scaling (MDS). The experiments analyze ten sets of different musical styles. First, for each musical composition, the PPP is produced using the time series lags captured by the average mutual information. Second, to unravel hidden relationships between the musical styles the MDS technique is used. The MDS is calculated based on two alternative metrics obtained from the PPP, namely, the average mutual information and the fractal dimension. The results reveal significant differences in the musical styles, demonstrating the feasibility of the proposed strategy and motivating further developments towards a dynamical analysis of musical sounds.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
25th Annual Conference of the European Cetacean Society, Cadiz, Spain 21-23 March 2011.
Resumo:
26th Annual Conference of the European Cetacean Society, Galway, Ireland 26-28 March 2012.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 25 de Março de 2013, Universidade dos Açores.
Resumo:
Copyright © 2014 Entomological Society of America.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
In memory of our beloved Professor José Rodrigues Santos de Sousa Ramos (1948-2007), who João Cabral, one of the authors of this paper, had the honor of being his student between 2000 and 2006, we wrote this paper following the research by experimentation, using the new technologies to capture a new insight about a problem, as him so much love to do it. His passion was to create new relations between different fields of mathematics. He was a builder of bridges of knowledge, encouraging the birth of new ways to understand this science. One of the areas that Sousa Ramos researched was the iteration of maps and the description of its behavior, using the symbolic dynamics. So, in this issue of this journal, honoring his memory, we use experimental results to find some stable regions of a specific family of real rational maps, the ones that he worked with João Cabral. In this paper we describe a parameter space (a,b) to the real rational maps fa,b(x) = (x2 −a)/(x2 −b), using some tools of dynamical systems, as the study of the critical point orbit and Lyapunov exponents. We give some results regarding the stability of these family of maps when we iterate it, specially the ones connected to the order 3 of iteration. We hope that our results would help to understand better the behavior of these maps, preparing the ground to a more efficient use of the Kneading Theory on these family of maps, using symbolic dynamics.
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
Seismic data is difficult to analyze and classical mathematical tools reveal strong limitations in exposing hidden relationships between earthquakes. In this paper, we study earthquake phenomena in the perspective of complex systems. Global seismic data, covering the period from 1962 up to 2011 is analyzed. The events, characterized by their magnitude, geographic location and time of occurrence, are divided into groups, either according to the Flinn-Engdahl (F-E) seismic regions of Earth or using a rectangular grid based in latitude and longitude coordinates. Two methods of analysis are considered and compared in this study. In a first method, the distributions of magnitudes are approximated by Gutenberg-Richter (G-R) distributions and the parameters used to reveal the relationships among regions. In the second method, the mutual information is calculated and adopted as a measure of similarity between regions. In both cases, using clustering analysis, visualization maps are generated, providing an intuitive and useful representation of the complex relationships that are present among seismic data. Such relationships might not be perceived on classical geographic maps. Therefore, the generated charts are a valid alternative to other visualization tools, for understanding the global behavior of earthquakes.
Resumo:
Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.