994 resultados para TROPICAL MOIST FOREST
Resumo:
The concentration of avian song at first light (i.e., the dawn chorus) is widely appreciated but has an enigmatic functional significance. The most widely accepted explanation is that birds are active but light levels are not adequate for foraging. As a consequence, the time of first song should be predictable from the light level of individuals singing at dawn. To test this, I collected data from a tropical forest of Ecuador, involving 130 species. Light intensity at first song was a highly repeatable species' trait (r = 0.57). Foraging height was a good predictor of first song, with canopy birds singing at lower light levels than understory birds (r = -0.62). Although light level predicts the onset of singing in tropical and temperate bird communities, the structural complexity and trophic specializations in tropical forests may exert an important influence, which has been overlooked in research conducted in the temperate zone.
Resumo:
Can social inequality be seen imprinted in a forest landscape? We studied the relationship between land holding, land use, and inequality in a peasant community in the Peruvian Amazon where farmers practice swidden-fallow cultivation. Longitudinal data on land holding, land use, and land cover were gathered through field-level surveys (n = 316) and household interviews (n = 51) in 1994/1995 and 2007. Forest cover change between 1965 and 2007 was documented through interpretation of air photos and satellite imagery. We introduce the concept of “land use inequality” to capture differences across households in the distribution of forest fallowing and orchard raising as key land uses that affect household welfare and the sustainability of swidden-fallow agriculture. We find that land holding, land use, and forest cover distribution are correlated and that the forest today reflects social inequality a decade prior. Although initially land-poor households may catch up in terms of land holdings, their use and land cover remain impoverished. Differential land use investment through time links social inequality and forest cover. Implications are discussed for the study of forests as landscapes of inequality, the relationship between social inequality and forest composition, and the forest-poverty nexus.
Resumo:
Land-use change can have a major influence on soil organic carbon (SOC) and above-ground C pools. We assessed a change from native vegetation to introduced Pinus species plantations on C pools using eight paired sites. At each site we determined the impacts on 0–50 cm below-ground (SOC, charcoal C, organic matter C, particulate organic C, humic organic C, resistant organic C) and above-ground (litter, coarse woody debris, standing trees and woody understorey plants) C pools. In an analysis across the different study sites there was no significant difference (P > 0.05) in SOC or above-ground tree C stocks between paired native vegetation and pine plantations, although significant differences did exist at specific sites. SOC (calculated based on an equivalent soil mass basis) was higher in the pine plantations at two sites, higher in the native vegetation at two sites and did not differ for the other four sites. The site to site variation in SOC across the landscape was far greater than the variation observed with a change from native vegetation to introduced Pinus plantation. Differences between sites were not explained by soil type, although tree basal area was positively correlated with 0–50 cm SOC. In fact, in the native vegetation there was a significant linear relationship between above-ground biomass and SOC that explained 88.8% of the variation in the data. Fine litter C (0–25 mm diameter) tended to be higher in the pine forest than in the adjacent native vegetation and was significantly higher in the pine forest at five of the eight paired sites. Total litter C (0–100 mm diameter) increased significantly with plantation age (R2 = 0.64). Carbon stored in understorey woody plants (2.5–10 cm DBH) was higher in the native vegetation than in the adjacent pine forest. Total site C varied greatly across the study area from 58.8 Mg ha−1 at a native heathland site to 497.8 Mg ha−1 at a native eucalypt forest site. Our findings suggest that the effects of change from native vegetation to introduced Pinus sp. forest are highly site-specific and may be positive, negative, or have no influence on various C pools, depending on local site characteristics (e.g. plantation age and type of native vegetation).
Resumo:
Although the value of primary forests for biodiversity conservation is well known, the potential biodiversity and conservation value of regenerating forests remains controversial. Many factors likely contribute to this, including: 1. the variable ages of regenerating forests being studied (often dominated by relatively young regenerating forests); 2. the potential for confounding on-going human disturbance (such as logging and hunting); 3. the relatively low number of multi-taxa studies; 4. the lack of studies that directly compare different historic disturbances within the same location; 5. contrasting patterns from different survey methodologies and the paucity of knowledge on the impacts across different vertical levels of rainforest biodiversity (often due to a lack of suitable methodologies available to assess them). We also know relatively little as to how biodiversity is affected by major current impacts, such as unmarked rainforest roads, which contribute to this degradation of habitat and fragmentation. This thesis explores the potential biodiversity value of regenerating rainforests under the best of scenarios and seeks to understand more about the impact of current human disturbance to biodiversity; data comes from case studies from the Manu and Sumaco Biosphere Reserves in the Western Amazon. Specifically, I compare overall biodiversity and conservation value of a best case regenerating rainforest site with a selection of well-studied primary forest sites and with predicted species lists for the region; including a focus on species of key conservation concern. I then investigate the biodiversity of the same study site in reference to different types of historic anthropogenic disturbance. Following this I investigate the impacts to biodiversity from an unmarked rainforest road. In order to understand more about the differential effects of habitat disturbance on arboreal diversity I directly assess how patterns of butterfly biodiversity vary between three vertical strata. Although assessments within the canopy have been made for birds, invertebrates and bats, very few studies have successfully targeted arboreal mammals. I therefore investigate the potential of camera traps for inventorying arboreal mammal species in comparison with traditional methodologies. Finally, in order to investigate the possibility that different survey methodologies might identify different biodiversity patterns in habitat disturbance assessments, I investigate whether two different but commonly used survey methodologies used to assess amphibians, indicate the same or different responses of amphibian biodiversity to historic habitat change by people. The regenerating rainforest study site contained high levels of species richness; both in terms of alpha diversity found in nearby primary forest areas (87% ±3.5) and in terms of predicted primary forest diversity from the region (83% ±6.7). This included 89% (39 out of 44) of the species of high conservation concern predicted for the Manu region. Faunal species richness in once completely cleared regenerating forest was on average 13% (±9.8) lower than historically selectively logged forest. The presence of the small unmarked road significantly altered levels of faunal biodiversity for three taxa, up to and potentially beyond 350m into the forest interior. Most notably, the impact on biodiversity extended to at least 32% of the whole reserve area. The assessment of butterflies across strata showed that different vertical zones within the same rainforest responded differently in areas with different historic human disturbance. A comparison between forest regenerating after selective logging and forest regenerating after complete clearance, showed that there was a 17% greater reduction in canopy species richness in the historically cleared forest compared with the terrestrial community. Comparing arboreal camera traps with traditional ground-based techniques suggests that camera traps are an effective tool for inventorying secretive arboreal rainforest mammal communities and detect a higher number of cryptic species. Finally, the two survey methodologies used to assess amphibian communities identified contrasting biodiversity patterns in a human modified rainforest; one indicated biodiversity differences between forests with different human disturbance histories, whereas the other suggested no differences between forest disturbance types. Overall, in this thesis I find that the conservation and biodiversity value of regenerating and human disturbed tropical forest can potentially contribute to rainforest biodiversity conservation, particularly in the best of circumstances. I also highlight the importance of utilising appropriate study methodologies that to investigate these three-dimensional habitats, and contribute to the development of methodologies to do so. However, care should be taken when using different survey methodologies, which can provide contrasting biodiversity patterns in response to human disturbance.
Resumo:
The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.
Resumo:
Spores of the tropical mosses Pyrrhobryum spiniforme, Neckeropsis undulata and N. disticha were characterized regarding size, number per capsule and viability. Chemical substances were analyzed for P. spiniforme and N. undulata spores. Length of sporophyte seta (spore dispersal ability) was analyzed for P. spiniforme. Four to six colonies per species in each site (lowland and highland areas of an Atlantic Forest; Serra do Mar State Park, Brazil) were visited for the collection of capsules (2008 - 2009). Neckeropsis undulata in the highland area produced the largest spores (ca. 19 µm) with the highest viability. The smallest spores were found in N. disticha in the lowland (ca. 13 µm). Pyrrhobryum spiniforme produced more spores per capsule in the highland (ca. 150,000) than in lowland (ca. 40,000); longer sporophytic setae in the lowland (ca. 64 mm) than in the highland (ca. 43 mm); and similar sized spores in both areas (ca. 16 µm). Spores of N. undulata and P. spiniforme contained lipids and proteins in the cytoplasm, and acid/neutral lipids and pectins in the wall. Lipid bodies were larger in N. undulata than in P. spiniforme. No starch was recorded for spores. Pyrrhobryum spiniforme in the highland area, different from lowland, was characterized by low reproductive effort, but presented many spores per capsule.
Resumo:
The Cerrado region still receives relatively little ornithological attention, although it is regarded as the only tropical savanna in the world considered to be a biodiversity hotspot. Cerradão is one of the least known and most deforested Cerrado physiognomies and few recent bird surveys have been conducted in these forests. In order to rescue bird records and complement the few existing inventories of this under-studied forest type in the state of São Paulo, we looked for published papers on birds of cerradão. Additionally we surveyed birds at a 314-ha cerradão remnant located in central São Paulo, Brazil, from September 2005-December 2006 using unlimited distance transect counts. Out of 95 investigations involving cerradão bird studies, only 17 (18%) investigations teased apart bird species recorded inside cerradão from those recorded in other physiognomies of Cerrado. Except for one study, no research found more than 64 species in this type of forest, a result shared within many regions from Brazil and Bolivia. Differences in species richness do not seem be related with levels of disturbance of landscape or fragment size. Considering all species recorded in cerradão in Brazil and Bolivia, a compilation of data accumulated 250 species in 36 families and 15 orders. In recent surveys at central São Paulo, we recorded 48 species in 20 families, including the Pale-bellied Tyrant-Manakin Neopelma pallescens, threatened in São Paulo, and the Helmeted Manakin Antilophia galeata, near threatened in the state and endemic to the Cerrado region. Among the most abundant species inside this fragment, none was considered to be neither threatened nor endemic.
Resumo:
Secondary forests and exotic tree plantations are expanding across tropical landscapes. However, our current understanding of the value of these human-dominated forest landscapes for invertebrate biodiversity conservation is still very poor. In this paper, we use the leaf-litter ant fauna to assess invertebrate diversity in one commercially managed Eucalyptus plantation (four years old), two abandoned plantations of different regeneration ages (16 and 31 years), and one neighboring secondary Atlantic Forest in Southeastern Brazil. There was a clear gradient in species richness from the secondary forest to the managed Eucalyptus plantation; richness and diversity peaked in secondary forest and in the older regenerating Eucalyptus plantation. Significantly more species were recorded in secondary forest samples than in Eucalyptus plantations, but Eucalyptus plantations had a similar level of richness. Furthermore, a non-metric multidimensional scaling analysis revealed clear differences in species composition between the younger managed Eucalyptus plantation (understory absent) and habitats with sub-developed or developed understory. Eucalyptus plantations were characterized by an assemblage of widespread, generalist species very different from those known to occur in core forest habitats of southeastern Brazil. Our results indicate that while older regenerating Eucalyptus plantations can provide habitat to facilitate the persistence of generalist ant species, it is unlikely to conserve most of the primary forest species, such as specialized predators, Dacetini predators, and nomadic species.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO(2) supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH(4)) flux, direct CO(2) and CH(4) fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO(2) concentrations ranged from 6,491 to 14,976 mu atm and directly-measured stream CO(2) outgassing flux was 5,994 +/- A 677 g C m(-2) y(-1) of stream surface. Stream pCH(4) concentrations ranged from 291 to 438 mu atm and measured stream CH(4) outgassing flux was 987 +/- A 221 g C m(-2) y(-1). Despite high flux rates from the stream surface, the small area of stream itself (970 m(2), or 0.007% of watershed area) led to small directly-measured annual fluxes of CO(2) (0.44 +/- A 0.05 g C m(2) y(-1)) and CH(4) (0.07 +/- A 0.02 g C m(2) y(-1)) per unit watershed land area. Measured fluvial export of DIC (0.78 +/- A 0.04 g C m(-2) y(-1)), DOC (0.16 +/- A 0.03 g C m(-2) y(-1)) and coarse plus fine particulate C (0.001 +/- A 0.001 g C m(-2) y(-1)) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m(-2) y(-1) as CO(2) outgassing, 11.29 g C m(-2) y(-1) as fluvial DIC and 0.64 g C m(-2) y(-1) as fluvial DOC. Outgassing fluxes were somewhat lower than the 40-50 g C m(-2) y(-1) reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 +/- A 147 g C m(-2) y(-1)), but total losses of C transported by water comprised up to about 20% of the +/- A 150 g C m(-2) (+/- 1.5 Mg C ha(-1)) that is exchanged annually across Amazon tropical forest canopies.
Resumo:
The accumulation of chemical elements in biological compartments is one of the strategies of tropical species to adapt to a low-nutrient soil. This study focuses on the Atlantic Forest because of its eco-environmental importance as a natural reservoir of chemical elements. About 20 elements were determined by INAA in leaf, soil, litter and epiphyte compartments. There was no seasonality for chemical element concentrations in leaves, which probably indicated the maintainance of chemical elements in this compartment. Considering the estimated quantities, past deforestation events could have released large amounts of chemical elements to the environment.
Resumo:
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.
Resumo:
Rare species are one of the principal components of the species richness and diversity encountered in Dense Ombrophilous Tropical Forests. This study sought to analyze the rare canopy species within the Atlantic Coastal Forest in Rio de Janeiro State, Brazil. Six different communities were examined: Dense Ombrophilous alluvial Forest; Dense sub-montane Ombrophilous Forest; Dense Montane Ombrophilous in Serra do Mar and Serra da Mantiqueira. In each area the vegetation was sampled within forty 10 x 25 m plots alternately distributed along a linear transect. All trees with DBH (1.3 m above ground level) a parts per thousand yen5 cm were sampled. The canopy was characterized using the allometric relationship between diameter and height, and included all trees with BDH a parts per thousand yen10 cm and height a parts per thousand yen10 m. A total of 64 families, 206 genera, and 542 species were sampled, of which 297 (54.8%) represented rare species (less than one individual per hectare). The percentage of rare species varied from 34 to 50% in each of the different communities sampled. A majority of these rare trees belonged to the Rosidae, and a smaller proportion to the Dilleniidae. It was concluded that there was no apparent pattern to rarity among families, that rarity was probably derived from a number of processes (such as gap formation), and that a great majority of the rare species sampled were consistently rare. This indicates that the restricted geographic distribution and high degree of endemism of many arboreal taxa justifies the conservation of even small fragments of Atlantic Forest.
Resumo:
Tropical countries face special specific problems in implementing sustainable forest management (SFM). In many countries, questions are raised on whether tropical forests should be publicly, commonly or privately owned and managed in order to enhance sustainability. Other debates also focus on whether small-scale enterprises are better positioned than large-scale industrial concessions to reduce poverty and attain sustainable management. In countries where large tracts of forest are state-owned, concessions are viewed as a means of delivering services of public and collective interest through an association of private investment and public regulation. However, the success of an industrial concession model in countries with large forest resource endowment to achieve multiple goals such as sustainable forest management and local/regional development depends on two critical assumptions. First, forest functions and services should be managed and maintained as public goods. In many cases, additional uses - and corresponding rights - can take place alongside logging activities. Industrial concessions can be more efficient than other tenure models (such as community-based forest management and small-scale enterprises) in achieving SFM, add value to raw material and comply with growing environmental norms. This is especially the case in market-remote areas with low population density and poor infrastructure. Secondly, to achieve these different outcomes, any concession system needs to be monitored and regulated, especially in contexts dominated by asymmetrical information between regulating authorities and concessionaires. New institutional responses have recently been put forward in several countries, providing valuable materials to design a renewed policy mix which associates public and private incentives. This paper provides a survey of the experience of forest concessions in several Central African and South American countries. The concession system is examined in order to clarify the issues involved, the problems encountered, and what can be learned from the shared experience of these countries in the last decade. This paper argues that despite a sometimes patchy record, concessions can help promote SFM so long as they are packaged with a certain number of specific measures. (C) 2008 Elsevier B.V. All rights reserved.