823 resultados para THERMOLUMINESCENCE DOSIMETRY PHOSPHOR
Resumo:
The Quantitative Assessment of Solar UV [ultraviolet] Exposure for Vitamin D Synthesis in Australian Adults (AusD) Study aimed to better define the relationship between sun exposure and serum 25-hydroxyvitamin D (25(OH)D) concentration. Cross-sectional data were collected between May 2009 and December 2010 from 1,002 participants aged 18-75 years in 4 Australian sites spanning 24° of latitude. Participants completed the following: 1) questionnaires on sun exposure, dietary vitamin D intake, and vitamin D supplementation; 2) 10 days of personal ultraviolet radiation dosimetry; 3) a sun exposure and physical activity diary; and 4) clinical measurements and blood collection for 25(OH)D determination. Our multiple regression model described 40% of the variance in 25(OH)D concentration; modifiable behavioral factors contributed 52% of the explained variance, and environmental and demographic or constitutional variables contributed 38% and 10%, respectively. The amount of skin exposed was the single strongest contributor to the explained variance (27%), followed by location (20%), season (17%), personal ultraviolet radiation exposure (8%), vitamin D supplementation (7%), body mass index (weight (kg)/height (m)2) (4%), and physical activity (4%). Modifiable behavioral factors strongly influence serum 25(OH)D concentrations in Australian adults. In addition, latitude was a strong determinant of the relative contribution of different behavioral factors.
Resumo:
Purpose The goal of this work was to set out a methodology for measuring and reporting small field relative output and to assess the application of published correction factors across a population of linear accelerators. Methods and materials Measurements were made at 6 MV on five Varian iX accelerators using two PTW T60017 unshielded diodes. Relative output readings and profile measurements were made for nominal square field sizes of side 0.5 to 1.0 cm. The actual in-plane (A) and cross-plane (B) field widths were taken to be the FWHM at the 50% isodose level. An effective field size, defined as FSeff=A·B, was calculated and is presented as a field size metric. FSeffFSeff was used to linearly interpolate between published Monte Carlo (MC) calculated kQclin,Qmsrfclin,fmsr values to correct for the diode over-response in small fields. Results The relative output data reported as a function of the nominal field size were different across the accelerator population by up to nearly 10%. However, using the effective field size for reporting showed that the actual output ratios were consistent across the accelerator population to within the experimental uncertainty of ±1.0%. Correcting the measured relative output using kQclin,Qmsrfclin,fmsr at both the nominal and effective field sizes produce output factors that were not identical but differ by much less than the reported experimental and/or MC statistical uncertainties. Conclusions In general, the proposed methodology removes much of the ambiguity in reporting and interpreting small field dosimetric quantities and facilitates a clear dosimetric comparison across a population of linacs
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
Two sources of uncertainty in the X ray computed tomography imaging of polymer gel dosimeters are investigated in the paper.The first cause is a change in postirradiation density, which is proportional to the computed tomography signal and is associated with a volume change. The second cause of uncertainty is reconstruction noise.A simple technique that increases the residual signal to noise ratio by almost two orders of magnitude is examined.
Resumo:
In this work we examine two aspects of the PAGAT gel dosimeter. The first aspect studied is determination of a stable range of concentrations of the anti-oxidant Tetrakis Hydroxy Phosphonium Chloride (THPC). Once the desired THPC concentration is determined, we proceed to an investigation into the effect of pre-irradiation storage time and how this affects the dose response of the gel.
Resumo:
Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
Introduction This study investigates uncertainties pertaining to the use of optically stimulated luminescence dosimeters (OSLDs) in radiotherapy dosimetry. The sensitivity of the luminescent material is related to the density of recombination centres [1], which is in the range of 1015–1016 cm-3. Because of this non-uniform distribution of traps in crystal growth the sensitivity varies substantially within a batch of dosimeters. However, a quantitative understanding of the relationship between the response of an OSLD and its sensitive volume has not yet been investigated or reported in literature. Methods In this work, OSLDs are scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. Results When extrapolating the sensitive volume’s radiodensity from the CT data, it was shown that there is a non-uniform distribution incrystal growth as illustrated in Fig. 1. A plot of voxel count versus the element-specific correction factor is shown in Fig. 2 where each point represents a single OSLD. A line was fitted which has an R2-value of 0.69 and a P-value of 8.21 9 10-19. This data shows that the response of a dosimeter decreases proportionally with sensitive volume. Extrapolating from this data, a quantitative relationship between response and sensitive volume was roughly determined for this batch of dosimeters. A change in volume of 1.176 9 10-5 cm3 corresponds to a 1 % change in response. In other words, a 0.05 % change in the nominal volume of the chip would result in a 1 % change in response. Discussion and conclusions This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor. Furthermore, the ‘true’ volume of an OSLD’s sensitive material is, on average, 17.90 % less than that which has been reported in literature, mainly due to the presence of air cavities in the material’s structure. Finally, the potential effects of the inaccuracy of Al2O3:C deposition increases with decreasing chip size. If a luminescent dosimeter were manufactured with a smaller volume than currently employed using the same manufacturing protocol, the variation in response from chip to chip would more than likely exceed the current 5 % range.
Resumo:
Gel dosimetry and plastic chemical dosimeters such as PresageTM are capable of very accurately mapping dose distributions in three dimensions. Combined with their near tissue equivalence one would expect that after several decades of development they would be the dosimeter of choice for dosimetry, however they have not achieve widespread clinical use. This presentation will include a brief description and history of developments in gels and 3D plastics for dosimetry, the limitations and advantages, and their role in the future.
Resumo:
Cancers of the brain and central nervous system account for 1.6% of new cancers and 1.8% of cancer deaths globally. The highest rates of all developed nations are observed in Australia and New Zealand. There are known complexities associated with dose measurement of very small radiation fields. Here, 3D dosimetric verification of treatments for small intracranial tumours using gel dosimetry was investigated.
Resumo:
In this work we test the feasibility of a new calibration method for gel dosimetry. We examine, through Monte Carlo modelling, whether the inclusion of an organic plastic scintillator system at key points within the gel phantom would perturb the dose map. Such a system would remove the requirement for a separate calibration gel, removing many sources of uncertainty.
Resumo:
A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3% / 3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10% overshoot errors.
Resumo:
A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy−1 and a diffusion rate of 0.133 mm2 h−1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.
Resumo:
This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.