999 resultados para THERMAL NEUTRONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(styrene peroxide) has been prepared and characterized. Nuclear magnetlc resonance (NMR) spectra Of the polymer show the shift Of aliphatic protons. Differential scanning calorimetric (DSC) and differential thermal analysis (DTA) results show anexothermic peak around 110 OC which is characteristic of peroxide decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire resistance of light-gauge steel frame (LSF) walls can be enhanced by lining them with single or multiple layers of wall boards. This research is focused on the thermal per-formance of Magnesium Oxide (MgO) wall boards in comparison to the conventional gypsum plasterboards exposed to standard fire on one side. Thermal properties of MgO board and gypsum plasterboard were measured first and then used in the finite element heat transfer models of the two types of panels. The measured thermal property results show that MgO board will perform better than the gypsum plasterboards due to its higher specific heat values at elevated temperatures. However, MgO board loses 50% of its ini-tial mass at about 500 °C compared to 16% for gypsum plasterboard. The developed finite element models were validated using the fire test results of gypsum plasterboards and then used to study the thermal performance of MgO board panels. Finite element analysis re-sults show that when MgO board panels are exposed to standard fire on one side the rate of temperature rise on the ambient side is significantly reduced compared to gypsum plas-terboard. This has the potential to improve the overall thermal performance of MgO board lined LSF walls and their fire resistance levels (FRL). However, full scale fire tests are needed to confirm this. This paper presents the details of this investigation and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis, spectroscopic and thermal characterization of two new classes of polysulfide polymers: poly[1(phenoxymethyl) ethylene polysulfide] (PPMEP), and poly [1-(phenoxy) ethylene polysulfide] (PPEP) is presented. The direct pyrolysis mass spectrometry (DP-MS) technique, used to study the thermal degradation behavior of these polysulfide polymers, indicated that the polymers underwent degradation through the weak-links scission. The thermal stability of the polysulfide polymers decreased as the ``rank'' (number of sulfur atoms in the polysulfide linkage; n=1, 2, 4) increased. The main-chain flexibility of these polysulfide polymers in terms of their C-13 NMR spinlattice relaxation time (T-1) measurements on the backbone methine (-CH-) and methylene (-CH2-) carbons are reported here for the first time. A comparative study of the solution chain dynamics indicated that it increased as ``rank'' of the polysulfide linkages decreased as well as by introducing side chain spacers such as, ether (-O-) or methyleneoxy (-CH2O-) groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDIES on potassium perchlorate/polystyrene (KP/PS) propellant systems have been carried out by using such techniques as thermogravimetry (TG), differential thermal analysis (DTA), and mass spectrometry (MS). It has been found that the thermal decomposition (TD) behavior of the KP/PS propellant is similar to that of the AP/PS propellant studied earlier.! It has also been observed that the TD of KP in the melt has a correlation with the burning rate (r) of KP/PS propellant at atmospheric pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc film containing hexagonal plate stack and tower-like micro structures were grown on Si substrates at high temperature by thermal evaporation. Thermal oxidation studies on these micro structures have shown that ZnO nanoneedles selectively grow from the facets of the zinc microstructure at temperature above 300 degrees C in atmosphere TEM analysis showed that single crystalline and bicrystalline nanoneedles were formed in this oxidation process and the growth direction of these nanoneedles was identified along the [1 1 (2) overbar 0]. Based on the structural studies and morphological observation, we have proposed a possible mechanism for the selective growth of ZnO nanoneedles during thermal oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT (R) package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tuberefrigerator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All organisms have evolved mechanisms to acquire thermotolerance. A moderately high temperature activates heat shock genes and triggers thermotolerance towards otherwise lethal high temperature. The focus of this work is the recovery mechanisms ensuring survival of Saccharomyces cerevisiae yeast cells after thermal insult. Yeast cells, first preconditioned at 37˚C, can survive a short thermal insult at 48-50˚C and are able to refold heat-denatured proteins when allowed to recover at physiological temperature 24˚C. The cytoplasmic chaperone Hsp104 is required for the acquisition of thermotolerance and dissolving protein aggregates in the cytosol with the assistance of disaccharide trehalose. In the present study, Hsp104 and trehalose were shown to be required for conformational repair of heat-denatured secretory proteins in the endoplasmic reticulum. A reporter protein was first accumulated in the lumen of endoplasmic reticulum and heat-denatured by thermal insult, and then failed to be repaired to enzymatically active and secretion-competent conformation in the absence of Hsp104 or trehalose. The efficient transport of a glycoprotein CPY, accumulated in the endoplasmic reticulum, to the vacuole after thermal insult also needed the presence of Hsp104 and trehalose. However, proteins synthesized after thermal insult at physiological temperature were secreted with similar kinetics both in the absence and in the presence of Hsp104 or trehalose, demonstrating that the secretion machinery itself was functional. As both Hsp104 and trehalose are cytosolic, a cross-talk between cytosolic and luminal chaperone machineries across the endoplasmic reticulum membrane appears to take place. Global expression profiles, obtained with the DNA microarray technique, revealed that the gene expression was shut down during thermal insult and the majority of transcripts were destroyed. However, the transcripts of small cytosolic chaperones Hsp12 and Hsp26 survived. The first genes induced during recovery were related to refolding of denatured proteins and resumption of de novo protein synthesis. Transcription factors Spt3p and Med3p appeared to be essential for acquisition of full thermotolerance. The transcription factor Hac1p was found to be subject to delayed up-regulation at mRNA level and this up-regulation was diminished or delayed in the absence of Spt3p or Med3p. Consequently, production of the chaperone BiP/Kar2p, a target gene of Hac1p, was diminished and delayed in Δspt3 and Δmed3 deletion strains. The refolding of heat-denatured secretory protein CPY to a transport-competent conformation was retarded, and a heat-denatured reporter enzyme failed to be effectively reactivated in the cytoplasm of the deletion strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carrier type reversal (CTR) from p- to n-type in semiconducting chalcogenide glasses is an important and a long standing problem in glass science. Ge-Se glasses exhibit CTR when the metallic elements Bi and Pb are added. For example, bulk Ge42-xSe58Pbx glasses exhibit CTR around 8-9 at. % of Pb. These glasses have been prepared by melt quenching method. Glass transition temperature (T-g), Specific heat change between the liquid and the glassy states (Delta C-p) at T-g and the nonreversing heat flow (Delta H-nr) measured by modulated differential scanning calorimetry exhibit anomalies at 9 at. % of Pb. These observed anomalies are interpreted on the basis of the nano scale phase separation occurring in these glasses.