961 resultados para TDMA (Time Division Multiple Access)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Internet service providers (ISPs) play a pivotal role in contemporary society because they provide access to the Internet. The primary task of ISPs – to blindly transfer information across the network – has recently come under pressure, as has their status as neutral third parties. Both the public and the private sector have started to require ISPs to interfere with the content placed and transferred on the Internet as well as access to it for a variety of purposes, including the fight against cybercrime, digital piracy, child pornography, etc. This expanding list necessitates a critical assessment of the role of ISPs. This paper analyses the role of the access provider. Particular attention is paid to Dutch case law, in which access providers were forced to block The Pirate Bay. After analysing the position of ISPs, we will define principles that can guide the decisions of ISPs whether to take action after a request to block access based on directness, effectiveness, costs, relevance and time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

More than a quarter of patients with HIV in the United States are diagnosed in hospital settings most often with advanced HIV related conditions.(1) There has been little research done on the causes of hospitalization when the patients are first diagnosed with HIV. The aim of this study was to determine if the patients are hospitalized due to an HIV related cause or due to some other co-morbidity. Reduced access to care could be one possible reason why patients are diagnosed late in the course of the disease. This study compared the access to care of patients diagnosed with HIV in hospital and outpatient setting. The data used for the study was a part of the ongoing study “Attitudes and Beliefs and Steps of HIV Care”. The participants in the study were newly diagnosed with HIV and recruited from both inpatient and outpatient settings. The primary and the secondary diagnoses from hospital discharge reports were extracted and a primary reason for hospitalization was ascertained. These were classified as HIV-related, other infectious causes, non–infectious causes, other systemic causes, and miscellaneous causes. Access to care was determined by a score based on responses to a set of questions derived from the HIV Cost and Services Utilization Study (HCSUS) on a 6 point scale. The mean score of the hospitalized patients and mean score of the patients diagnosed in an outpatient setting was compared. We used multiple linear regressions to compare mean differences in the two groups after adjusting for age, sex, race, household income educational level and health insurance at the time of diagnosis. There were 185 participants in the study, including 78 who were diagnosed in hospital settings and 107 who were diagnosed in outpatient settings. We found that HIV-related conditions were the leading cause of hospitalization, accounting for 60% of admissions, followed by non-infectious causes (20%) and then other infectious causes (17%). The inpatient diagnosed group did not have greater perceived access-to-care as compared to the outpatient group. Regression analysis demonstrated a statistically significant improvement in access-to-care with advancing education level (p=0.04) and with better health insurance (p=0.004). HIV-related causes account for many hospitalizations when patients are first diagnosed with HIV. Many of these HIV-related hospitalizations could have been prevented if patients were diagnosed early and linked to medical care. Programs to increase HIV awareness need to be an integral part of activities aimed at control of spread of HIV in the community. Routine testing for HIV infection to promote early HIV diagnosis can prevent significant morbidity and mortality.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.