369 resultados para Symbiosis.
Resumo:
This study determined whether the radial growth of lobes of the foliose lichen Parmelia conspersa (Ehrh. ex Ach.)Ach. was influenced by the radial growth and morphology of their closest neighbours and whether such interactions influence thallus symmetry. The radial growth and morphology of a sample of adjacent lobes from six thalli was measured. Positive correlations were observed between radial growth and lobe width in three thalli and with the degree of bifurcation of the lobe in two thalli. Negative correlations between the radial growth of adjacent lobes were observed in four thalli suggesting that faster growing lobes may inhibit the growth of their neighbours.Lobes glued next to individual lobes had no signifiacnt effect on the radial growth of wide or narrow lobes. Lobes glued 1-2 mm in front of their neighbours exhibited an intital phase of increased radial growth and then a phase of slower growth. Radial growth decreased when the lobes were glued 2 mm behind their neighbours and these lobes were essentially eliminated by the growth of the adjacent lobes. The data suggest that lobe interactions may incresae lobe growth variation within a thallus. However, the decrease in radial growth of lobes which protrude from the margin and the elimination of slower growing lobes may help to maintain thallus symmetry.
Resumo:
The aim of this study was to determine how thallus symmetry could be maintained in foliose lichens when variation in the growth of individual lobes may be high. Hence, the radial growth of a sample of lobes was studied monthly, over 22 months, in 7 thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. And 5 thalli of P. glabratula ssp fuliginosa (fr. ex Duby) Laund. The degree of variation in the total radial growth of different lobes within a thallus over 22 months varied between thalli. Individual lobes showed a fluctuating pattern of radial growth from month to month with alternating periods of fast and slow growth. Monthly variations in radial growth of different lobes were synchronized in some but not in all thalli. Few significant correlations were found between the radial growth of individual lobes and total monthly rainfall or shortwave radiation. The levels of ribitol, arabitol and mannitol were measured in individual lobes. All three polyols varied significantly between lobes within a thallus suggesting that variations in algal phostosynthesis and in the partitioning of fungal polyols may contribute to lobe growth variation. The effect on thallus symmetry of lobes which grew radially either consistently faster or slower than average was studied. Slow growing lobes were overgrown, and gaps in the perimeter were eliminated by the growth of neighbouring lobes, in approximately 7 to 9 months. However, a rapidly growing lobe, with its neighbours removed on either side, continued to grow radially at the same rate as rapidly growing control lobes. The results suggested that lobe growth variation results from a combination of factors which may include the origin of the lobes, lobe morphology and the patterns of algal cell division and hyphal elongation in different lobes. No convincing evidence was found to suggest that exchange of carbohydrate occurred between lobes which would tend to equalize their radial growth. Hence, the fluctuating pattern of lobe growth observed may be sufficient to maintain a degree of symmetry in most thalli. In addition, slow growing lobes would tend to be overgrown by faster growing neighbours thus preventing the formation of indentations in the thallus perimeter.
Resumo:
The radial growth (RG) of 120 lobes from 35 thalli of the foliose lichen Parmelia conspersa (Ehrh. ex Ach.) Ach. was studied monthly over 22 months in south Gwynedd, Wales, UK. Autocorrelation analysis of each lobe identified three patterns of fluctuation: 1) random fluctuations (58% of lobes), 2) a cyclic pattern of growth (23% of lobes), and 3) fluctuating growth interrupted by longer periods of very low or zero growth (19% of lobes). In 80% of thalli, two or three patterns of fluctuation were present within the same thallus. Growth fluctuations were correlated with climatic variables in 31% of lobes, most commonly with either total rainfall or number of rain days per month. Lobes correlated with climate were not associated with a particular type of growth fluctuation. RG of a lobe was positively correlated with the degree of bifurcation of the lobe tip. It is hypothesised that lobes of P. conspersa exhibit a cyclic pattern of growth due in part to lobe division. The effects of climate, periods of zero growth, and microvariations in the environment of a lobe are superimposed on this cyclic pattern resulting in the random growth of many lobes. Random growth fluctuations may contribute to the maintenance of thallus symmetry in P. conspersa.
Resumo:
Seasonal growth was studied in the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. in an area of South Gwynedd, Wales. Radial growth rate (RGR) of a sample of 20 thalli was measured in situ at three-month intervals over 51 months on a southeast-facing rock surface. There were five periods of significant growth: July-September of 1993, 1994 and 1995, in January-March of 1996, and in April-June of 1997. In four of these periods, growth coincided with a mean temperature maximum (Tmax) over a three-month period exceeding 15°C and three of the maxima with greater than 450 sunshine hours. Two of the growth maxima coincided with periods of total rainfall exceeding 300 mm and one with greater than 50 rain days in a three-month period. There were no significant linear correlations between RGR and the climatic variables measured. However, there were significant non-linear relationships between RGR and Tmax, the mean temperature minimum (Tmin), the total number of air and ground frosts and the number of rain days in a growth period, the relationship with Tmax being the most significant. Hence, in south Gwynedd, maximum growth of R. geographicum occurs in any season although the period July-September appears to be the most favourable. Relationships between growth and climatic variables were non-linear, temperature having the most significant influence on seasonal growth. ©2006 Balaban.
Resumo:
The growth curves of four common species of crustose lichens, viz., Buellia aethalea (Ach.) Th. Fr., Lecidea tumida Massai., Rhizocarpon geographicum (L.) DC., and Rhizocarpon reductum Th. Fr. were studied at a site in south Gwynedd, north Wales, UK. Radial growth rates (RGR, mm 1.5 yr-1) were greatest in thalli of R. reductum and least in R. geographicum. Variation in RGR between thalli was greater in B. aethalea and L. tumida than in the species of Rhizocarpon. The relationship between growth rate and thallus diameter was not asymptotic; RGR increasing in smaller thalli to a maximum and then declining in larger diameter thalli. A polynomial curve was fitted to the data; the growth curves being fitted best by a second-order (quadratic) curve, the best fit to this model being shown by B. aethalea. A significant linear regression with a negative slope was also fitted to the growth of the larger thalli of each species. The data suggest that the growth curves of the four crustose lichens differ significantly from the asymptotic curves of foliose lichen species. A phase of declining RGR in larger thalli appears to be characteristic of crustose lichens and is consistent with data from lichenometric studies.
Resumo:
The association between lobe connections and the degree of lobe crowding and radial growth was studied in thalli of the foliose lichen Xanthoparmelia conspersa. In 35 thalli, 15% of the lobes were not physically connected to either of their neighbours before the lobes merged into the centre of the thallus. Twenty-five percent of the lobes were connected in pairs and 29% in groups of three. Approximately 5% of the lobes were interconnected in larger groups of six or more. The mean number of lobes per group in a thallus was positively correlated with thallus diameter and with the degree of lobe growth variation but was unrelated to annual radial growth rate (RGR). The degree of crowding of the lobes in a thallus was defined as a 'crowding index', viz., the product of lobe density and mean lobe width. Crowding index increased rapidly with size in smaller thalli but changed less with size in larger thalli. Crowding index was positively correlated with RGR but was unrelated to lobe growth variation. Lobes removed from large thalli and glued in various configurations to simulate different degrees of crowding did not demonstrate an association between lobe crowding and RGR over one year. These results suggest that the pattern of lobe connectivity of a thallus is associated with lobe growth variation in X. conspersa. The degree of lobe crowding is associated with the increase in RGR with thallus size in smaller thalli and by restricting lobe width, could also be a factor associated with the more constant growth of larger thalli.
Resumo:
Variations in hypothallus width were studied in relation to radial growth in the lichen Rhizocarpon geographicum (L.) DC. in South Gwynedd, Wales, UK. Variations were present both within and between thalli and in successive three-month growth periods, but there was no significant variation associated with thallus size. In individual thalli, there were increases and reductions in hypothallus width in successive three-month growth periods attributable to hypothallus growth and changes at the margin of the areolae. Total radial growth over 18 months was positively correlated with initial hypothallus width. These results suggest: 1) individual thalli of similar size vary considerably in hypothallus width, 2) fluctuations in the location of the margin of the areolae in successive three month periods is an important factor determining this variability, 3) hypothallus width predicts subsequent radial growth over 18 months, and 4) variation in hypothallus; width is a factor determining between thallus variability in radial growth rates in yellow-green species of Rhizocarpon.
Resumo:
The development of new areolae on the marginal hypothallus of the lichen Rhizocarpon geographicum (L.) DC was studied after complete or partial removal of the central areolae. New areolae developed slowly on the isolated hypothalli over two years. Development was similar when the areolae were completely removed and when the central areolae were separated from the marginal hypothallus by ‘moats’ 2 to 5 mm in width. However, in intact thalli, the marginal areolae developed rapidly during Jan. – June 1986 but showed periods of retreat from the margin during Oct. - Dec. 1985 and July – Sept. 1986. These results suggested that primary areolae may develop from free-living algal cells trapped by the hypothallus while secondary areolae may develop from zoospores produced by the thallus. Complete removal of the areolae resulted in no measurable radial growth of the marginal hypothallus over 18 months. Removal of the central areolae to within 1 and 2 mm of the hypothallus significantly reduced growth. These results suggest that the areolae may supply the hypothallus with carbon for growth. When the marginal hypothallus was experimentally removed a new hypothallus developed within one year. Regeneration occurred initially by retreat of the marginal areolae and later by new hyphal growth. The concentration of ribitol, arabitol and mannitol was measured in the areolae and marginal hypothallus on four occasions in 1985/6 in a population growing on a steep south facing rock surface. The three carbohydrates were present in significantly higher concentration in the areolae than in the hypothallus. Hence, the slow growth of this species may result from inhibited transport of carbohydrate from areolae to hypothallus.
Resumo:
The crustose lichen Rhizocarpon geographicum (L.) DC. comprises yellow-green lichenized areolae which develop and grow on the surface of a non-lichenized fungal hypothallus, the latter extending beyond the edge of the areolae to form a marginal ring. The hypothallus advances very slowly and the considerable longevity of R. geographicum, especially in Arctic and Alpine environments, has been exploited by geologists in dating the exposure age of rock surfaces (lichenometry). This review explores various aspects of the biology of R. geographicum including: (1) structure and symbionts, (2) lichenization, (3) development of areolae, (4) radial growth rates (RaGR), (5) growth physiology, (6) changes in RaGR with thallus size (growth ratesize curve), (7) maturity and senescence, and (8) aspects of ecology. Lichenization occurs when fungal hyphae become associated with a compatible species of the alga Trebouxia, commonly found free-living on the substratum. Similarly, 'primary' areolae develop from free-living algal cells trapped by the advancing hypothallus. The shape of the growth rate-size curve of R. geographicum is controversial but may exhibit a phase of decreasing growth in larger thalli. Low rates of translocation of carbohydrate to the hypothallus together with allocation for stress resistance results in very slow RaGR, a low demand for nutrients, hence, the ability of R. geographicum to colonize more extreme environments. Several aspects of the biology of R. geographicum have implications for lichenometry including early development, mortality rates, the shape of the growth-rate size curve, and competition. © The Author(s) 2012.
Resumo:
The factors associated with lobe division were studied in thalli of the lichen Parmelia conspersa (Ehrh. ex Ach.)Ach. Lobe division was studied in sequences of adjacent lobes using spatial pattern analysis. In five large thalli, lobe division within the thallus margin was randomly distributed. Correlations between the degree of lobe division, the radial growth of the lobe and lobe morphology were studied in six thalli. Lobe division was positively correlated with either lobe width or area in four thalli. Correlations were observed with radial growth or morphology of the adjacent lobes in two thalli. Dividing and non-dividing lobes were removed from large thalli and glued to pieces of slate with their tips either at the same level or in front of neighbouring lobes. Dividing lobes divided more rapidly when their tips were glued in front of their neighbours. The levels of ribitol, arabitol and mannitol were measured within a 2 mm region of the tip in dividing and non-dividing lobes on four occasions in 1994. Carbohydrate levels were significantly increased in dividing compared with non-dividing lobes. In addition, the mean size of the algal cells was greater in non-dividing compared with dividing lobes especially at the lobe base. However, the percentage of zoosporangia and aplanosporangia did not vary significantly in dividing and non-dividing lobes. These results suggest that: 1) the pattern of lobe division within the thallus margin may be random, 2) lobe division may be determined by lobe size and the location of the lobe tip relative to the neighbouring lobes and 3) there may be an increase in the productivity of lobes associated with lobe division.
Resumo:
Degeneration of the older parts of foliose lichen thalli often lead to the formation of a space or 'window' in the centre of the colonies. The percentage of thalli of different size which exhibited 'windows' was studied in twenty saxicolous lichen populations in south Gwynedd, Wales. The proportion of thalli with 'windows' increased with thallus size. The size class at which 50% and 100% of thalli exhibited 'windows' varied between populations. Differences between populations were not correlated with distance from the sea, aspect, slope or porosity of the substrate or the total number of lichen species present. However, a higher percentage of smaller thalli had 'windows' on rock surfaces with a greater lichen cover. There were no significant differences in the levels of Ca, Mg, Cu or Zn in large (>4 cm) and small (<2 cm) Parmelia conspersa (Ehrh. ex Ach.) Ach. thalli or in the centres and marginal lobes of these thalli. The concentration of ribitol, arabitol and mannitol was significantly reduced in the centre of large thalli compared with the margin of large thalli and the centre of small thalli. However, carbohydrate levels were similar in the centre of large thalli and the margin of small thalli. The data suggest that loss of the thallus centre is a degenerative process related to thallus size. In the field, the formation of 'windows' may be related to the intensity of competition on a substrate. Central degeneration was not associated with a deficiency or an accumulation of Ca, Mg, Cu and Zn in the thallus centre. However, degeneration may be associated with a reduction in carbohydrates in the centre compared with the marginal lobes.
Resumo:
The influence of bird droppings on the growth and fragmentation of five lichen species transplanted to slate and cement substrates was studied over a period of 15 months in South Gwynedd, Wales. The results suggested that at 15 months (1) thallus areas of Parmelia conspersa (Ehrh. Ex Ach.)Ach. were greater on both substrates with the addition of bird droppings with a greater increase on cement; (2) In Parmelia saxatilis (L.)Ach. And Parmelia glabratula ssp. fuliginosa (Fr. ex Duby)Laund., thallus areas were greatest on slate alone and least on cement with bird droppings; (3) in Physcia orbicularis (Neck.)Poetsch, thallus area was significantly reduced on cement alone compared with slate and cement treated with bird droppings; and (4) in Xanthoria parietina (L.)Th.Fr., thallus area was significantly greater on cement with bird droppings compared with slate and cement alone. These responses were attributable to the effect of the substrate and bird droppings on radial growth and the degree of fragmentation of the thalli. The results suggested that nutrient enrichment was more important than the substrate in determining the distribution of P. conspersa and Ph. orbicularis. However, the substrate and bird droppings were important in the remaining species, the data suggesting that P. saxatilis and P. glabratula ssp. fuliginosa would prefer nutrient-poor, siliceous rocks and X. parietina calcareous, nutrient enriched rocks in South Gwynedd.
Resumo:
The objectives of this study were to investigate: (1) whether foliose lichen thalli could be transplanted from one substrate to another and (2) whether such transplants could be used to study the influence of the substrate on growth. Hence, six saxicolous lichens, with contrasting distributions on lime-rich and lime-poor substrates in South Gwynedd, Wales, were transplanted onto slate, granite, asbestos and cement. Fragments of the perimeters of thalli were glued to the different substrates using Bostic adhesive. Parmelia conspersa (Ehrh. Ex Ach.)Ach. and Parmelia saxatilis (L.)Ach., fragments increased in area over 15 months on slate and granite but decreased in area or did not survive on asbestos and cement. Fragments of Xanthoria parietina (L.)Th.Fr. and Physcia tenella (Scop.)DC. em Bitt. did not survive on slate and granite while some fragments survived but grew poorly on asbestos and cement. Parmelia glabratula ssp. fuliginosa (Fr. ex Duby)Laund. fragments decreased in area on all substrates and especially on cement and asbestos while Physcia orbicularis (Neck.)Poetsch fragments increased in area on granite and cement, decreased on asbestos and did not change significantly on slate. The results suggested that the distribution of P. conspersa and P. saxatilis was determined primarily by physico-chemical properties of the substrate. By contrast, P. glabratula ssp. fuliginosa may have responded to the transplant procedure while X. parietina, Ph. tenella and Ph. orbicularis may require nutrient enrichment to grow successfully on a substrate.
Resumo:
Parmelia conspersa (Ehrh. Ex Ach.)Ach. is a foliose lichen found more frequently on south facing compared with north facing rock surfaces in South Gwynedd, Wales, UK. The radial growth of thalli of P. conspersa from a north and a south facing rock surface was measured in situ at intervals of two months for 1 yr during 1990/1991. Mean annual radial growth rates were greater on the south compared with the north facing rock surface. In addition, the pattern of radial growth varied during the year with maximum growth recorded in the Feb/Mar. period especially on the south facing rock surface. The levels of ribitol, arabitol and mannitol were measured in individual lobes of P. conspersa collected from the same rock surfaces on 4 days (2 Jun; 7 July and 30 Nov. 1990 and 29 Mar. 1991) during 1990/1991. The total of the three carbohydrates varied between days; the levels of arbitol and ribitol being significantly lower in the 7 July sample on both north and south facing rock surfaces. In addition, the levels ribitol, arabitol and mannitol were higher on the south facing rock surface especially in the summer samples. The ratio of arabitol plus mannitol to ribitol and the mannitol/arabitol ratio varied more between days sampled than between north and south facing rock surfaces. The level of ribitol in individual thalli was positively correlated with arabitol on the north facing and with mannitol on the south facing slope. These results suggest that differences in the radial growth of P. conspersa thalli with aspect are more likely to reflect higher rates of photosynthesis on the south facing rock surface rather than large difference in the way carbohydrates were partitioned on the different surfaces. Lower radial growth rates may place P. conspersa at a competitive disadvantage on north facing rock surfaces.
Carbohydrates in the hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC
Resumo:
Carbohydrate concentrations in the marginal hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. were measured in north Wales, U.K. using gas chromatography. Ribitol, arabitol, and mannitol were the most abundant carbohydrates while a- glucose ß-glucose, fructose, sucrose, and trehalose were present in smaller amounts. The concentrations of arabitol, ribitol, mannitol, fructose, and a-glucose were greater in the areolae while the concentration of trehalose was greater in the hypothallus. Concentrations of carbohydrates varied little between sample days. Concentrations of polyols in the hypothallus were not correlated with those in the areolae. These results suggest: 1) the hypothallus has a lower demand for carbohydrates than the areolae or there is limited transport from areolae to hypothallus, 2) increased trehalose in the non-lichenised hypothallus may be an adaptation to withstand stress and desiccation, and 3) polyols are partitioned differently in the hypothallus and areolae.