419 resultados para Surgeries
Resumo:
PURPOSE: The advent of imaging software programs has proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3-dimensional (3D) surgical simulation still needs to be tested. This study was conducted to determine whether the virtual surgery performed on 3D models constructed from cone-beam computed tomography (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. MATERIALS AND METHODS: Construction of pre- and postsurgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had 1-piece maxillary advancement surgery was performed. The postsurgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling t tests were used to assess the differences between simulated and actual surgical outcomes. RESULTS: For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing 2- and 1-jaw surgeries. CONCLUSIONS: Virtual surgical methods were reliably reproduced. Oral surgery residents could benefit from virtual surgical training. Computer simulation has the potential to increase predictability in the operating room.
Resumo:
Healed Legg-Calvé-Perthes disease may cause both intra-articular and extra-articular impingement, resulting in a symptomatic hip prior to the onset of osteoarthritis. Various impingement-relieving surgeries have been used in the past; however, the development of the safe surgical dislocation technique has allowed a better understanding of complex deformity that may be present in these hips and hence may improve treatment of these symptomatic prearthritic hips. This article outlines the range of deformities possible in a Perthes hip, and treatment strategies to surgically address these deformities. For Perthes disease good preoperative clinical and radiographic assessment is essential, and intraoperative assessment vital.
Resumo:
For virtually all hospitals, utilization rates are a critical managerial indicator of efficiency and are determined in part by turnover time. Turnover time is defined as the time elapsed between surgeries, during which the operating room is cleaned and preparedfor the next surgery. Lengthier turnover times result in lower utilization rates, thereby hindering hospitals’ ability to maximize the numbers of patients that can be attended to. In this thesis, we analyze operating room data from a two year period provided byEvangelical Community Hospital in Lewisburg, Pennsylvania, to understand the variability of the turnover process. From the recorded data provided, we derive our best estimation of turnover time. Recognizing the importance of being able to properly modelturnover times in order to improve the accuracy of scheduling, we seek to fit distributions to the set of turnover times. We find that log-normal and log-logistic distributions are well-suited to turnover times, although further research must validate this finding. Wepropose that the choice of distribution depends on the hospital and, as a result, a hospital must choose whether to use the log-normal or the log-logistic distribution. Next, we use statistical tests to identify variables that may potentially influence turnover time. We find that there does not appear to be a correlation between surgerytime and turnover time across doctors. However, there are statistically significant differences between the mean turnover times across doctors. The final component of our research entails analyzing and explaining the benefits of introducing control charts as a quality control mechanism for monitoring turnover times in hospitals. Although widely instituted in other industries, control charts are notwidely adopted in healthcare environments, despite their potential benefits. A major component of our work is the development of control charts to monitor the stability of turnover times. These charts can be easily instituted in hospitals to reduce the variabilityof turnover times. Overall, our analysis uses operations research techniques to analyze turnover times and identify manners for improvement in lowering the mean turnover time and thevariability in turnover times. We provide valuable insight into a component of the surgery process that has received little attention, but can significantly affect utilization rates in hospitals. Most critically, an ability to more accurately predict turnover timesand a better understanding of the sources of variability can result in improved scheduling and heightened hospital staff and patient satisfaction. We hope that our findings can apply to many other hospital settings.
Resumo:
Background: The clinical use of an enamel matrix derivative (EMD) has been shown to promote formation of new cementum, periodontal ligament (PDL), and bone and to significantly enhance the clinical outcomes after regenerative periodontal surgery. It is currently unknown to what extent the bleeding during periodontal surgery may compete with EMD adsorption to root surfaces. The aim of this study is to evaluate the effect of blood interactions on EMD adsorption to root surfaces mimicking various clinical settings and to test their ability to influence human PDL cell attachment and proliferation. Methods: Teeth extracted for orthodontic reasons were subjected to ex vivo scaling and root planing and treated with 24% EDTA, EMD, and/or human blood in six clinically related settings to determine the ability of EMD to adsorb to root surfaces. Surfaces were analyzed for protein adsorption via scanning electron microscopy and immunohistochemical staining with an anti-EMD antibody. Primary human PDL cells were seeded on root surfaces and quantified for cell attachment and cell proliferation. Results: Plasma proteins from blood samples altered the ability of EMD to adsorb to root surfaces on human teeth. Samples coated with EMD lacking blood demonstrated a consistent even layer of EMD adsorption to the root surface. In vitro experiments with PDL cells demonstrated improved cell attachment and proliferation in all samples coated with EMD (irrespective of EDTA) when compared to samples containing human blood. Conclusion: Based on these findings, it is advised to minimize blood interactions during periodontal surgeries to allow better adsorption of EMD to root surfaces.
Resumo:
STUDY DESIGN:: retrospective analysis of prospectively collected clinical data. OBJECTIVE:: To assess the long-term outcome of patients with monosegmental L4/5 degenerative spondylolisthesis treated with the dynamic Dynesys device. SUMMARY OF BACKGROUND DATA:: The Dynesys® system has been used as a semirigid, lumbar dorsal pedicular stabilization device since 1994. Good short-term results have been reported, but little is known about the long-term outcome following treatment for degenerative spondylolisthesis at the L4/5 level. METHODS:: 39 consecutive patients with symptomatic degenerative lumbar spondylolisthesis at the L4/5 level were treated with bilateral decompression and Dynesys instrumentation. At a mean follow-up of 7.2 years (range 5.0-11.2▒y) they underwent clinical and radiographic evaluation and quality of life assessment. RESULTS:: At final follow-up back pain improved in 89% and leg pain improved in 86% of patients compared to preoperative status. 83% of patients reported global subjective improvement. 92% would undergo the surgery again. 8 patients (21%) required further surgery due to symptomatic adjacent segment disease (6 cases), late onset infection (1 case), and screw breakage (1 case). In 9 cases radiological progression of spondylolisthesis at the operated segment was found. 74% of operated segments showed limited flexion-extension range of less than 4°. Adjacent segment pathology, though without clinical correlation, was diagnosed at the L5/S1 (17.9%) and L3/4 (28.2%) segments. In 4 cases asymptomatic screw loosening was observed. CONCLUSION:: Monosegmental Dynesys instrumentation of degenerative spondylolisthesis at L4/5 shows good long-term results. The rate of secondary surgeries is comparable to other dorsal instrumentation devices. Residual range of motion in the stabilized segment is reduced, and the rate of radiological and symptomatic adjacent segment degeneration is low. Patient satisfaction is high. Dynesys stabilization of symptomatic L4/5 degenerative spondylolisthesis is a possible alternative to other stabilization devices.
Resumo:
OBJECTIVES: The aim of this study was to investigate whether total arch replacement (TAR) during initial surgery for root aneurysm should be routinely performed in patients with Marfan syndrome (MFS). METHODS: Retrospective analysis of 94 consecutive MFS patients fulfilling Ghent criteria who underwent 148 aortic surgeries and were followed at this institution during the past 16 years. RESULTS: The mean follow-up interval was 8.8 ± 7 years. Initial presentation was acute aortic dissection (AAD) in 35% of patients (76% Type A and 24% Type B) and aneurismal disease in 65%. TAR was performed in 8% of patients during initial surgery for AAD (otherwise a hemi-arch replacement was performed) and 1.6% in elective root repair. Secondary TAR had to be performed in only 3% of patients without, but in 33% following AAD (33% Type A and 33% Type B; P = 0.0001). Thirty-day, 6-month, 1-year and overall mortalities were 3.2, 5.3, 6.4 and 11.7%, respectively. Operative and 30-day mortalities in secondary aortic arch replacement were zero. Secondary TAR after AAD did not increase the need for the replacement of the entire thoracoabdominal aorta during follow-up compared with patients without secondary TAR (37 vs 40%, P = 1.0). CONCLUSIONS: MFS patients undergoing elective root repair have small risk of reinterventions on the aortic arch, and primary prophylactic replacement does not seem to be justified. In patients with AAD, the need for reinterventions is precipitated by the dissection itself and not by limiting the procedure to the hemi-arch replacement in the emergency setting. Limiting surgery to the aortic root, ascending aorta and proximal aortic arch is associated with low mortality in MFS patients presenting with AAD.
Resumo:
OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.
Resumo:
Less invasive methods of performing total hip arthroplasty have been considered controversial after increased complication rates and component malpositioning were reported. A new method of performing total hip arthroplasty through an incision in the superior capsule, posterior to the abductors and anterior to the posterior capsule, was developed with the aim of producing a technique that maintained the joint stability of the transgluteal exposure and the rapid abductor recovery of the posterior exposure. We assessed the recovery and complications of this technique performed with surgical navigation. The study group was compared with similar subjects who had conventional total hip arthroplasty, without surgical navigation, using the transgluteal exposure. There were 185 consecutive total hip arthroplasties in the study group and 189 nonconsecutive historical total hip arthroplasties in the control group. The two groups were controlled for complexity and had no differences in body mass index, gender, diagnosis, operative side, bilateral operations, and previous surgeries. Patients were evaluated for clinical recovery and perioperative complications at 9 and 24 weeks. The study group recovered faster at both followup examinations. The study group had fewer perioperative and postoperative complications compared with the control group. Accuracy of component positioning was not compromised compared to the control group. Less invasive surgery with the philosophy of maximally preserving the abductors, posterior capsule, and short rotators may result in a safer operation with faster recovery than traditional techniques.
Resumo:
PURPOSE: To examine the possible association between pseudophakia and neovascular age-related macular degeneration (AMD). METHODS: Reports of all patients undergoing fluorescein angiography in the authors' department over a 6-year period were retrospectively reviewed. Four hundred ninety-nine patients with recent onset of neovascular AMD in one eye and early age-related maculopathy (ARM) in the fellow eye were included in the study. Lens status (phakic or pseudophakic) in both eyes at the time of onset of neovascular AMD and the time between cataract surgeries (if performed) and onset of neovascular AMD were determined. RESULTS: There was no significant difference in lens status between eyes with neovascular AMD and fellow eyes with early ARM (115/499 [23.0%] vs. 112/499 [22.4%] pseudophakic; P = 0.88, odds ratio 1.035, 95% CI 0.770-1.391). Subgroup analysis revealed no difference between the groups with large drusen, small drusen, or pigmentary changes only (respectively, 20.3% vs. 19.6% pseudophakic, P = 0.92; 20.5% vs. 23.3% pseudophakic, P = 0.84; 33.3% vs. 31.7% pseudophakic, P = 1.0). Pseudophakic eyes with neovascular AMD had not been pseudophakic for a significantly longer period at the time of onset of neovascular AMD than their pseudophakic fellow eyes at the same time point (225.9 +/- 170.4 vs. 209.9 +/- 158.2 weeks, P = 0.27). CONCLUSIONS: The results do not support the hypothesis that pseudophakia is a major risk factor for the development of neovascular AMD.
Resumo:
Astroblastoma is a historically traded microscopic diagnosis to denote a rare neuroepithelial tumor of uncertain nosology, involving a distinctive pattern of pseudorosette arrangement of neoplastic cells. While displaying some glial properties, the latter shall not - by definition - be either reducible to or part of any conventional glioma type. We report on clinicopathologic correlations in a case of astroblastoma involving an extensive rhabdoid phenotype of tumor cells. The male patient was operated on at the age of 53 and 59 years for a left parietal tumor measuring 5.8 cm in diameter at the first presentation. On magnetic resonance imaging and angiography, both the primary and its recurrence were discrete, highly vascularized, and contrast-enhancing. The second surgery was complemented with radiotherapy of 66 Gy, followed by chemotherapy with Temozolomide. Twelve years into clinical history, the patient has stable minimal residual disease at the age of 65. A review of pathology samples from both surgeries showed well-differentiated astroblastoma according to current standards, with an MIB-1 labeling index of 1% and 4%, respectively. Neither of the specimens involved cellular anaplasia, overt mitotic activity, microvascular proliferation, or palisading necrosis. Most tumor cells harbored paranuclear filamentous rhabdoid inclusions that were immunostained for vimentin and, in part, also for GFAP. No polyantigenic reactivity was observed. This example contributes another facet to the spectrum of the so-called composite rhabdoid tumors. Involving a low-grade parent neoplasm, it also further substantiates the incipient perception that the rhabdoid phenotype neither is a peculiar but nonspecific convergence point of anaplastic evolution, nor are such lesions indiscriminately bound for a relentless course.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
BACKGROUND: In this paper, we present a new method for the calibration of a microscope and its registration using an active optical tracker. METHODS: Practically, both operations are done simultaneously by moving an active optical marker within the field of view of the two devices. The IR LEDs composing the marker are first segmented from the microscope images. By knowing their corresponding three-dimensional (3D) position in the optical tracker reference system, it is possible to find the transformation matrix between the referential of the two devices. Registration and calibration parameters can be extracted directly from that transformation. In addition, since the zoom and focus can be modified by the surgeon during the operation, we propose a spline based method to update the camera model to the new setup. RESULTS: The proposed technique is currently being used in an augmented reality system for image-guided surgery in the fields of ear, nose and throat (ENT) and craniomaxillofacial surgeries. CONCLUSIONS: The results have proved to be accurate and the technique is a fast, dynamic and reliable way to calibrate and register the two devices in an OR environment.
Resumo:
This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia – cell’s foot used for locomotion – anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.
Resumo:
OBJECTIVE: To quantify the economic burden of in-hospital surgical site infections (SSIs) at a European university hospital. DESIGN: Matched case-control study nested in a prospective observational cohort study. SETTING: Basel University Hospital in Switzerland, where an average of 28,000 surgical procedures are performed per year. METHODS: All in-hospital occurrences of SSI associated with surgeries performed between January 1, 2000, and December 31, 2001, by the visceral, vascular, and traumatology divisions at Basel University Hospital were prospectively recorded. Each case patient was matched to a control patient by age, procedure code, and National Nosocomial Infection Surveillance System risk index. The case-control pairs were analyzed for differences in cost of hospital care and in provision of specialized care. RESULTS: A total of 6,283 procedures were performed: 187 SSIs were detected in inpatients, 168 of whom were successfully matched with a control patient. For case patients, the mean additional hospital cost was SwF-19,638 (95% confidence interval [CI], SwF-8,492-SwF-30,784); the mean additional postoperative length of hospital stay was 16.8 days (95% CI, 13-20.6 days); and the mean additional in-hospital duration of antibiotic therapy was 7.4 days (95% CI, 5.1-9.6 days). Differences were primarily attributable to organ space SSIs (n = 76). CONCLUSIONS: In a European university hospital setting, SSIs are costly and constitute a heavy and potentially preventable burden on both patients and healthcare providers.
Resumo:
INTRODUCTION: The coverage of recurrent pressure sores with unstable scar in the surrounding tissue is still an unsolved problem in the literature. Local and regional transfer of tissue often does not meet the requirements of the tissue deficit. Especially in recurrent pressure sores, the adjacent skin has already been consumed due to multiple surgeries. As a good alternative, the microsurgical transfer of flaps offers viable tissue to cover even large pressure sores. METHODS: We performed a total of six free flaps in five patients who suffered from intractable pressure sores in the hip region. The age of the patients was between 41 and 63 years. The defect size varied between 6 x 6 cm and 25 x 30 cm. Two combined myocutaneous scapula-latissimus dorsi, two myocutaneous latissimus dorsi, one anteromedial thigh, and one rectus femoris flap were used to cover the defects. RESULTS: The average follow-up time was 29 months. Flaps provided stable coverage in four of five patients at 12-month follow-up. There was one subtotal flap necrosis that was subsequently treated with split-thickness skin grafting. CONCLUSION: In this series of five patients with six free flaps, we were able to show that the microsurgical transfer of tissue is a valuable option in the treatment of difficult pressure sores. Even in older and debilitated patients, this method is a good alternative to conventional local flaps.