905 resultados para Sudge recycling
Resumo:
The ability of cells to adhere, spread and migrate is essential to many physiological processes, particularly in the immune system where cells must traffic to sites of inflammation and injury. By altering the levels of individual components of the VAMP3/Stx4/SNAP23 complex we show here that this SNARE complex regulates efficient macrophage adhesion, spreading and migration on fibronectin. During cell spreading this complex mediates the polarised exocytosis of VAMP3- positive recycling endosome membrane into areas of membrane expansion, where VAMP3's surface partner Q-SNARE complex Stx4/SNAP23 was found to accumulate. Lowering the levels of VAMP3 in spreading cells resulted in a more rounded cell morphology and most cells were found to be devoid of the typical ring-like podosome superstructures seen normally in spreading cells. In migrating cells lowering VAMP3 levels disrupted the polarised localisation of podosome clusters. The reduced trafficking of recycling endosome membrane to sites of cell spreading and the disorganised podosome localisation in migrating macrophages greatly reduced their ability to persistently migrate on fibronectin. Thus, this important SNARE complex facilitates macrophage adhesion, spreading, and persistent macrophage migration on fibronectin through the delivery of VAMP3-positive membrane with its cargo to expand the plasma membrane and to participate in organising adhesive podosome structures.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor α (TNFα) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNFα is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasmamembrane, and we investigated a possible role for lipid rafts in TNFα trafficking and secretion. TNFα surface delivery and secretion were found to be cholesterol- dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasmamembrane, particularly on filopodia. Imaging the early stages of TNFα surface distribution revealed these puncta to be the initial points of TNFα delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.
Resumo:
Membrane traffic in activated macrophages is required for two critical events in innate immunity: proinflammatory cytokine secretion and phagocytosis of pathogens. We found a joint trafficking pathway linking both actions, which may economize membrane transport and augment the immune response. Tumor necrosis factor α (TNFα) is trafficked from the Golgi to the recycling endosome (RE), where vesicle-associated membrane protein 3 mediates its delivery to the cell surface at the site of phagocytic cup formation. Fusion of the RE at the cup simultaneously allows rapid release of TNFα and expands the membrane for phagocytosis.
Resumo:
There is a growing demand for sustainable retirement villages in Australia due to an increasing number of ageing population and public acceptance of sustainable development. This research aims to gain a better understanding of retirees’ understanding about sustainable retirement living and their attitudes towards sustainable developments via a questionnaire survey approach. The results showed that the current and potential residents of retirement villages are generally very conscious of unsustainable resource consumption and would like their residences and community to be more environmentally friendly and energy efficient. The cost of energy supply is a concern to majority of respondents. Education is required to residents about recycling household waste and how to use available facilities. A better understanding of retirees’ awareness and attitudes towards sustainability issues helps to improve the sustainable developments of retirement villages in the future.
Resumo:
There is a growing demand for sustainable retirement villages in Australia due to an increasing number of ageing population and public acceptance of sustainable development. This research aims to gain a better understanding of retirees’ understanding about sustainable retirement living and their attitudes towards sustainable developments via a questionnaire survey approach. The results showed that the current and potential residents of retirement villages are generally very conscious of unsustainable resource consumption and would like their residences and community to be more environmentally friendly and energy efficient. The cost of energy supply is a concern to majority of respondents. Education is required to residents about recycling household waste and how to use available facilities. A better understanding of retirees’ awareness and attitudes towards sustainability issues helps to improve the sustainable developments of retirement villages in the future.
Resumo:
In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.
Resumo:
As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.
Resumo:
Construction and demolition (C&D) waste occupies the largest share of overall waste generation in many countries. However, waste management practices and outcomes may differ between countries. For instance, in Australia, C&D waste recovery is continuously improving during the last years but the amount of C&D waste increases every year, as there has been little improvement in waste avoidance and minimization. In contrast, in Germany, waste generation remains constant over many years despite the continuous economic growth. The waste recycling rate in Germany is one of the highest in the world. However, most waste recycled is from demolition work rather than from waste generated during new construction. In addition, specific laws need to be developed to further reduce landfill of non-recycled waste. Despite of the differences, C&D waste generation and recovery in both countries depend on the effectiveness of the statutory framework, which regulates their waste management practices. This is an issue in other parts of the world as well. Therefore countries can learn from each other to improve their current statutory framework for C&D waste management. By taking Germany and Australia as an example, possible measures to improve current practices of C&D waste management through better statutory tools are identified in this paper. After providing an overview of the statutory framework of both countries and their status in waste generation and recovery, a SWOT analysis is conducted to identify strengths, weaknesses, opportunities and threats of the statutory tools. Recommendations to improve the current statutory frameworks, in order to achieve less waste generation and more waste recovery in the construction industry are provided for the German and Australian government and they can also be transferred to other countries.
Resumo:
In Australia, few fashion brands have intervened in the design of their products or the systems around their product to tackle environmental pollution and waste. Instead, support of charities (whether social or environmental) has become conflated with sustainability in the eyes of the public.However, three established Australian brands recently put forward initiatives which explicitly tackle the pre-consumer or post-consumer waste associated with their products. In 2011, Billabong, one of the largest surfwear companies in the world, developed a collection of board shorts made from recycled bottles that are also recyclable at end of life. The initiative has been promoted in partnership with Bob Marley’s son Rohan Marley, and the graphics of the board shorts reference the Rastafarian colours and make use of Marley’s song lyrics. In this way, the company has tapped into an aspect of surf culture linked to environmental activism, in which the natural world is venerated. Two mid-market initiatives, by Metalicus and Country Road, each have a social outcome that arguably aligns to the values of their middle-class consumer base. Metalicus is spear-heading a campaign for Australian garment manufacturers to donate their pre consumer waste – fabric off-cuts – to charity Open Family Australia to be manufactured into quilts for the homeless. Country Road has partnered with the Australian Red Cross to implement a recycling scheme in which consumers donate their old Country Road garments in exchange for a Country Road gift voucher. Both strategies, while tackling waste, tell an altruistic story in which the disadvantaged can benefit from the consumption habits of the middle-class. To varying degrees, the initiative chosen by each company feeds into the stories they tell about themselves and about the consumers who purchase their clothing. However, how can we assess the impact of these schemes on waste management in real terms, or indeed the worth of each scheme in the wider context of the fashion system? This paper will assess the claims made by the companies and analyse their efficacy, suggesting that a more nuanced assessment of green claims is required, in which ‘green’ comes in many tonal variations.
Resumo:
Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc and used concrete is the main waste product of them. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainable benefits. As the mortar, bricks, glass and asphalt present in different constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test and California Bearing Ratio (CBR). Results were compared with those of the standard road materials used in Queensland, Australia and found that ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are sitting in the margin of the minimum required specifications of base materials while others are lower than that.
Resumo:
In the absence of a benchmarking mechanism specifically designed for local requirements and characteristics, a carbon dioxide footprint assessment and labelling scheme for construction materials is urgently needed to promote carbon dioxide reduction in the construction industry. This paper reports on a recent interview survey of 18 senior industry practitioners in Hong Kong to elicit their knowledge and opinions concerning the potential of such a carbon dioxide labelling scheme. The results of this research indicate the following. A well-designed carbon dioxide label could stimulate demand for low carbon dioxide construction materials. The assessment of carbon dioxide emissions should be extended to different stages of material lifecycles. The benchmarks for low carbon dioxide construction materials should be based on international standards but without sacrificing local integrity. Administration and monitoring of the carbon dioxide labelling scheme could be entrusted to an impartial and independent certification body. The implementation of any carbon dioxide labelling schemes should be on a voluntary basis. Cost, functionality, quality and durability are unlikely to be replaced by environmental considerations in the absence of any compelling incentives or penalties. There are difficulties in developing and operating a suitable scheme, particularly in view of the large data demands involved, reluctance in using low carbon dioxide materials and limited environmental awareness.
Resumo:
The international legal regime on shipbreaking is in its formative years. At the international level, the shipbreaking industry is partially governed by the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. However, how far this convention will be applicable for all aspects of transboundary movement of end-of-life ships is still, at least in the view of some scholars, a debatable issue. Against this backdrop, the International Maritime Organisation (IMO) has adopted a new, legally binding convention for shipbreaking. There is a rising voice from the developing countries that the convention is likely to impose more obligations on recycling facilities in the developing countries than on shipowners from rich nations. This may be identified as a clear derogation from the globally recognized international environmental law principle of common but differentiated treatment. This article will examine in detail major international conventions regulating transboundary movement and environmentally sound disposal of obsolete ships, as well as the corresponding laws of Bangladesh for implementing these conventions in the domestic arena. Moreover this article will examine in detail the recently adopted IMO Ship Recycling Convention.
Resumo:
Creative Statement: “There are those who see Planet Earth as a gigantic living being, one that feeds and nurtures humanity and myriad other species – an entity that must be cared for. Then there are those who see it as a rock full of riches to be pilfered heedlessly in a short-term quest for over-abundance. This ‘cradle to grave’ mentality, it would seem, is taking its toll (unless you’re a virulent disbeliever in climate change). Why not, ask artists Priscilla Bracks and Gavin Sade, take a different approach? To this end they have set out on a near impossible task; to visualise the staggering quantity of carbon produced by Australia every year. Their eerie, glowing plastic cube resembles something straight out of Dr Who or The X Files. And, like the best science fiction, it has technical realities at its heart. Every One, Every Day tangibly illustrates our greenhouse gas output – its 27m3 volume is approximately the amount of green-house gas emitted per capita, daily. Every One, Every Dayis lit by an array of LED’s displaying light patterns representing energy use generated by data from the Australian Energy Market. Every One, Every Day was formed from recycled, polyethylene – used milk bottles – ‘lent’ to the artists by a Visy recycling facility. At the end of the Vivid Festival this plastic will be returned to Visy, where it will re-enter the stream of ‘technical nutrients.’ Could we make another world? One that emulates the continuing cycles of nature? One that uses our ‘technical nutrients’ such as plastic and steel in continual cycles, just like a deciduous tree dropping leaves to compost itself and keep it’s roots warm and moist?” (Ashleigh Crawford. Melbourne – April, 2013) Artistic Research Statement: The research focus of this work is on exploring how to represent complex statistics and data at a human scale, and how produce a work where a large percentage of the materials could be recycled. The surface of Every One, Every Day is clad in tiles made from polyethylene, from primarily recycled milk bottles, ‘lent’ to the artists by the Visy recycling facility in Sydney. The tiles will be returned to Visy for recycling. As such the work can be viewed as an intervention in the industrial ecology of polyethylene, and in the process demonstrates how to sustain cycles of technical materials – by taking the output of a recycling facility back to a manufacturer to produce usable materials. In terms of data visualisation, Every One, Every Day takes the form of a cube with a volume of 27 cubic meters. The annual per capita emissions figures for Australia are cited as ranging between 18 to 25 tons. Assuming the lower figure, 18tons per capital annually, the 27 cubic meters represents approximately one day per capita of CO2 emissions – where CO2 is a gas at 15C and 1 atmosphere of pressure. The work also explores real time data visualisation by using an array of 600 controllable LEDs inside the cube. Illumination patterns are derived from a real time data from the Australian Energy Market, using the dispatch interval price and demand graph for New South Wales. The two variables of demand and price are mapped to properties of the illumination - hue, brightness, movement, frequency etc. The research underpinning the project spanned industrial ecology to data visualization and public art practices. The result is that Every One, Every Day is one of the first public artworks that successfully bring together materials, physical form, and real time data representation in a unified whole.
Resumo:
Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2 (0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.