932 resultados para Stokesian Dynamics Method
Resumo:
Mark resighting studies of the hornet robberfly, Asilus crabroniformis, were carried out during the flight seasons of 1999 and 2000 on agricultural land on the Chilterns in Oxfordshire, UK. Six patches of land were identified which contained characteristics thought to be attractive to hornet robberflies. One hundred and twenty eight adults were marked in 1999 and 257 in 2000. Marking was carried out on one of the patches, but resighting observations were collected from all six sites. The daily population sizes were estimated using the Jolly-Seber method. The daily population size peaked between 50 and 72 from 23 August until 13 September in 2000. This was very similar to the peak population size of between 50 and 74 estimated for 1999. Adults were found to be capable of living for nearly 5 weeks. The maximum linear distance from the point of marking that any individual moved across the study site was 625 m, but some individuals moved over 400 m in a single day. Unsuitable habitat (suburban gardens and a main road) did not present a barrier to dispersal. Males were more likely than females to loiter in sites peripheral to the breeding site, whilst females seemed to be more tied to the breeding site. Most adults were caught from dung piles, but insects avoided fresh dung and preferred instead dung that was well into the process of drying out. A variety of insect species were taken as prey, including many beetles and flies. The findings of the study are discussed in relation to the management of the landscape to enhance the long-term prospects of the hornet robberfly in the UK, and to achieve the UK Biodiversity Action Plan target for this species.
Resumo:
This paper describes the spectral design and manufacture of the narrow bandpass filters and 6-18µm broadband antireflection coatings for the 21-channel NASA EOS-AURA High Resolution Dynamics Limb Sounder (HIRDLS). A method of combining the measured spectral characteristics of each filter and antireflection coating, together with the spectral response of the other optical elements in the instrument to obtain a predicted system throughput response is presented. The design methods used to define the filter and coating spectral requirements, choice of filter materials, multilayer designs and deposition techniques are discussed.
Resumo:
A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 mu s of total simulation time) for the rebinding of NO to myoglobin. The unbound surface ((FeNO)-N-...) is represented using a standard force field, whereas the bound surface (Fe-NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein.
Resumo:
In this paper we evaluate the relative influence of external versus domestic inflation drivers in the 12 new European Union (EU) member countries. Our empirical analysis is based on the New Keynesian Phillips Curve (NKPC) derived in Galí and Monacelli (2005) for small open economies (SOE). Employing the generalized method of moments (GMM), we find that the SOE NKPC is well supported in the new EU member states. We also find that the inflation process is dominated by domestic variables in the larger countries of our sample, whereas external variables are mostly relevant in the smaller countries.
Resumo:
New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.
Resumo:
A great deal of work recently has focused on suspended and bedload sediment transport, driven primarily by interest in contaminant transfer. However, uncertainties regarding the role of storm events, macrophyte beds and interactions between the two phases of sediment still exist. This paper compares two study sites within the same catchment whose geology varies significantly. The differences in hydrology, suspended sediment (SS) transport and bed load transport that this causes are examined. In addition, a method to predict the mobilization of different size fractions of sediment during given flows is investigated using critical entrainment thresholds.
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Resumo:
It is shown how a renormalization technique, which is a variant of classical Krylov–Bogolyubov–Mitropol’skii averaging, can be used to obtain slow evolution equations for the vortical and inertia–gravity wave components of the dynamics in a rotating flow. The evolution equations for each component are obtained to second order in the Rossby number, and the nature of the coupling between the two is analyzed carefully. It is also shown how classical balance models such as quasigeostrophic dynamics and its second-order extension appear naturally as a special case of this renormalized system, thereby providing a rigorous basis for the slaving approach where only the fast variables are expanded. It is well known that these balance models correspond to a hypothetical slow manifold of the parent system; the method herein allows the determination of the dynamics in the neighborhood of such solutions. As a concrete illustration, a simple weak-wave model is used, although the method readily applies to more complex rotating fluid models such as the shallow-water, Boussinesq, primitive, and 3D Euler equations.
Resumo:
The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.
Resumo:
This paper introduces a novel approach for free-text keystroke dynamics authentication which incorporates the use of the keyboard’s key-layout. The method extracts timing features from specific key-pairs. The Euclidean distance is then utilized to find the level of similarity between a user’s profile data and his/her test data. The results obtained from this method are reasonable for free-text authentication while maintaining the maximum level of user relaxation. Moreover, it has been proven in this study that flight time yields better authentication results when compared with dwell time. In particular, the results were obtained with only one training sample for the purpose of practicality and ease of real life application.
Resumo:
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.
Resumo:
In recent years, computational fluid dynamics (CFD) has been widely used as a method of simulating airflow and addressing indoor environment problems. The complexity of airflows within the indoor environment would make experimental investigation difficult to undertake and also imposes significant challenges on turbulence modelling for flow prediction. This research examines through CFD visualization how air is distributed within a room. Measurements of air temperature and air velocity have been performed at a number of points in an environmental test chamber with a human occupant. To complement the experimental results, CFD simulations were carried out and the results enabled detailed analysis and visualization of spatial distribution of airflow patterns and the effect of different parameters to be predicted. The results demonstrate the complexity of modelling human exhalation within a ventilated enclosure and shed some light into how to achieve more realistic predictions of the airflow within an occupied enclosure.