678 resultados para Steel-works
Resumo:
Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.
Resumo:
Continuous loading and unloading can cause breakdown of cranes. In seeking solution to this problem, the use of an intelligent control system for improving the fatigue life of cranes in the control of mechatronics has been under study since 1994. This research focuses on the use of neural networks as possibilities of developing algorithm to map stresses on a crane. The intelligent algorithm was designed to be a part of the system of a crane, the design process started with solid works, ANSYS and co-simulation using MSc Adams software which was incorporated in MATLAB-Simulink and finally MATLAB neural network (NN) for the optimization process. The flexibility of the boom accounted for the accuracy of the maximum stress results in the ADAMS model. The flexibility created in ANSYS produced more accurate results compared to the flexibility model in ADAMS/View using discrete link. The compatibility between.ADAMS and ANSYS softwares was paramount in the efficiency and the accuracy of the results. Von Mises stresses analysis was more suitable for this thesis work because the hydraulic boom was made from construction steel FE-510 of steel grade S355 with yield strength of 355MPa. Von Mises theory was good for further analysis due to ductility of the material and the repeated tensile and shear loading. Neural network predictions for the maximum stresses were then compared with the co-simulation results for accuracy, and the comparison showed that the results obtained from neural network model were sufficiently accurate in predicting the maximum stresses on the boom than co-simulation.
Resumo:
Additive manufacturing is a fast growing manufacturing technology capable of producing complex objects without the need for conventional manufacturing process planning. During the process the work piece is built by adding material one layer at a time according to a digital 3D CAD model. At first additive manufacturing was mainly used to make prototypes but the development of the technology has made it possible to also make final products. Welding is the most common joining method for metallic materials. As the maximum part size of additive manufacturing is often limited, it may sometimes be required to join two or more additively manufactured parts together. However there has been almost no research on the welding of additively manufactured parts so far, which means that there has been very little information available on the possible differences compared to the welding of sheet metal parts. The aim of this study was to compare the weld joint properties of additively manufactured parts to those of sheet metal parts. The welding process that was used was TIG welding and the test material was 316L austenitic stainless steel. Weld joint properties were studied by making tensile, bend and hardness tests and by studying the weld microstructures with a microscope. Results show that there are certain characteristics in the welds of additively manufactured parts. The building direction of the test pieces has some impact on the mechanical properties of the weld. Nevertheless all the welds exhibited higher yield strength than the sheet metal welds but at the same time elongation at break was lower. It was concluded that TIG welding is a feasible process for welding additively manufactured parts.
Resumo:
Double grade S420MH/S355J2H – rakenneputki on Ruukin kylmämuovattujen rakenneputkien vakioteräslaji. Se voidaan mitoittaa joko lujuusluokan S355 tai S420 mukaisesti. Teräslajin S355 mukaisesti mitoitettaessa on suunnittelu yksinkertaista. Painonsäästöä ja pidennettyjä jännevälejä haluttaessa käytetään lujuusluokan S420 mukaista mitoitusta. Työn tavoitteena oli selvittää kylmämuovattujen teräsrakenneputkien todellinen puristuskestävyys. Eurocode 3:n mukaan kylmämuovatut teräsrakenneputket kuuluvat nurjahduskäyrälle c. Tutkimukseen valittiin viisi eri profiilia olevaa rakenneputkea, joiden poikkileikkausluokat olivat 1, 2, 3 ja 4. Käytettäessä rakenneputkia puristussauvoina, on teräksen käyttö tehokkainta poikkileikkausluokassa 3, lähellä poikkileikkausluokkaa 4. Rakenneputkista laskettiin muunnetun hoikkuuden arvoilla 0.1, 0.5, 1.0 ja 1.5 koesauvojen pituudet kaikille profiileille. Valmistettiin kolme samanlaista koesauvaa jokaisesta koosta ja puristuskokeita suoritettiin yhteensä 57 kappaletta. Koesauvojen todelliset pituudet, alkukäyryydet ja poikkileikkaukset mitattiin. Ainestodistuksista saatiin materiaalin todelliset lujuudet. Laskettiin Eurocode 3:n mukaisesti kestävyydet nurjahduskäyrille a, b ja c. Laskennallisia kestävyyksiä verrattiin puristuskokeiden tuloksiin. Puristuskokeiden tulosten perusteella voidaan b-käyrää pitää oikeana profiileille 100x100x3, 150,150x5 ja 200x200x6. Profiili 150x150x5 kuuluu poikkileikkausluokkaan 2. Profiilit 100x100x3 ja 200x200x6 kuuluvat poikkileikkausluokkaan 4. Profiili 50x50x2 kuuluu nurjahduskäyrälle c. Profiilin poikkileikkausluokka on 1 ja aiemmat tutkimukset tukevat nurjahduskäyrän c käyttöä. Profiilista 300x300x8.8 ei saatu testattua täyttä sarjaa sen suuren kapasiteetin rikottua testilaitteiston, mutta puristuskokeiden perusteella se kuuluu nurjahduskäyrälle b. Profiili kuuluu poikkileikkausluokkaan 4.
Resumo:
TIIVISTELMÄ Lappeenrannan teknillinen yliopisto Konetekniikan koulutusohjelma Voitto Kettunen Konepajan hitsaustuotannon kehittäminen kattavien laatuvaatimusten mukaiseksi Diplomityö 2015 167 sivua, 39 kuvaa, 26 taulukkoa ja 3 liitettä Tarkastajat: Professori Jukka Martikainen DI Pertti Kaarre Hakusanat: hitsaus, hitsauksen laatu, konepajan laadunhallinta, kattavat laatuvaatimukset, ISO 9001, ISO 3834, EN 1090 Keywords: welding, quality of welding, engineering workshop quality management, comprehensive quality requirements, ISO 9001, ISO 3834, EN 1090 Hitsaamalla liitetyt teräksiset rakenteet muodostavat ylivoimaisesti suurimman osan konepajatuotannosta. Niihin kuuluu esimerkiksi ajoneuvoja, koneita, laitteita, säiliöitä, siiloja, siltoja, mastoja, piippuja, tukirakenteita ja rakennusten runkoja. Tämän diplomityön tavoitteena on kehittää konepajan laadunhallinta sellaiseksi, että se mahdollistaa kattavien laatuvaatimusten täyttämisen hitsaustuotannossa. Laatuvaatimusten täyttämiseen pyritään käyttämällä hitsaustoimintojen standardia EN ISO 3834-2 sekä kantavien teräsrakenteiden standardeja EN 1090-1 ja EN 1090-2. Teräsrakenteiden suunnittelua ohjaa EN 1993 ja niiden toiminnallisia ominaisuuksia tuotestandardit, kuten terässavupiippu- ja säiliöstandardit. Kantavien teräsrakenteiden suunnittelua ja tuotantoa ohjaa myös seuraamusluokan CC, käyttöluokan SC ja tuotantoluokan PC kautta määräytyvä toteutusluokka EXC. Aikaisempaa enemmän tullaan panostamaan esimerkiksi asiakirjojen sähköiseen hallintaan, raaka-aineiden jäljitettävyyteen tuotteeseen, särmien ja kulmien muotoiluun, pintojen käsittelyyn, hitsien tarkastukseen, hitsaushenkilöstön pätevyyteen ja hitsaustuotannon tehokkuuteen. Saarijärven Säiliövalmiste Oy:n hitsauksen laadunhallinta sertifioitiin standardin ISO 3834-2 mukaan ja kantavien teräsrakenteiden FPC-järjestelmä standardisarjaa EN 1090 noudattaen. Samalla tehtiin päivitys laadunhallintajärjestelmään ISO 9001. Toteutus, joka tehtiin sovitussa aikataulussa, haastaa jokaisen toimijan konepajassa toiminnan, tuotannon ja tuotteiden laadun kehittämiseen uusia käytänteitä ja menetelmiä soveltaen. Kehitystoimien tuloksena toiminta on selkeämpää, ennakoitavampaa ja hallitumpaa, mikä lisää yrityksen toiminnan tuottavuutta ja kannattavuutta. Sertifioidut laatujärjestelmät ovat myötävaikuttaneet tilausten lisääntymiseen yrityksen kaikkien tuotteiden osalta.
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Weldability of powder bed fusion (PBF) fabricated components has come to discussion in past two years due to resent developments in the PBF technology and limited size of the machines used in the fabrication process. This study concentrated on effects of energy input of welding on mechanical properties and microstructural features of welds between PBF fabricated stainless steel 316L sheets and cold rolled sheet metal of same composition by the means of destructive testing and microscopic analysis. Optical fiber diameter, laser power and welding speed were varied during the experiments that were executed following one variable at a time (OVAT) method. One of the problems of welded PBF fabricated components has been lower elongations at break comparing to conventionally manufactured components. Decreasing energy input of the laser keyhole welding decreased elongations at break of the welded specimens. Ultimate tensile strengths were not affected significantly by the energy input of the welding, but fracturing of the specimens welded using high energy input occurred from the weld metal. Fracturing of the lower energy input welds occurred from the PBF fabricated base metal. Energy input was found to be critical factor for mechanical properties of the welds. Multioriented grain growth and formation of neck at fusion zone boundary on the cold rolled side of the weld was detected and suspected to be result from weld pool flows caused by differences in molten weld pool behaviour between the PBF fabricated and cold rolled sides of the welds.
The adherence of Pseudomonas fluorescens to marble, granite, synthetic polymers, and stainless steel
Resumo:
The adherence of Pseudomonas fluorescens cells to nine food-processing contact surfaces was evaluated using the plate-count method. The surfaces include marble, granite, stainless steel, polyvinyl chloride, polyurethane, and silicone-coated cloth, which have been used only in a few studies concerning bacterial adherence. The number of cells adhered to the surfaces increased with contact time reaching 5.0-6.1 log CDM.cm-2 after 10 hours, which can be considered a well established adherence process. The number of adhered cells doubled in 29.5 minutes and 23.5 minutes on stainless steel and thin polyvinyl chloride-coated cloth, respectively. For the other surfaces, this value was 9.8 minutes on average. Marble, granite, thick polyvinyl-coated cloth, double-faced rugous polyurethane, and silicone-coated cloth were not different (p < 0.05) in their ability to adhere cells (CFU/cm²) after 2 and 10 hours. The surfaces that had higher percentage of similarity in the adhesion level and higher log CFU/cm² of adhered cells were double-faced rugous polyurethane, silicone-coated cloth, and granite. The surfaces showed very different microtopography characteristics when viewed using scanning electron microscopy. This experiment showed the importance of using appropriate materials for food contact during processing, which will affect the cleaning and sanitation procedures.
Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface
Resumo:
The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1) when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
Strenx® 960 MC is a direct quenched type of Ultra High Strength Steel (UHSS) with low carbon content. Although this material combines high strength and good ductility, it is highly sensitive towards fabrication processes. The presence of stress concentration due to structural discontinuity or notch will highlight the role of these fabrication effects on the deformation capacity of the material. Due to this, a series of tensile tests are done on both pure base material (BM) and when it has been subjected to Heat Input (HI) and Cold Forming (CF). The surface of the material was dressed by laser beam with a certain speed to study the effect of HI while the CF is done by bending the specimen to a certain angle prior to tensile test. The generated results illustrate the impact of these processes on the deformation capacity of the material, specially, when the material has HI experience due to welding or similar processes. In order to compare the results with those of numerical simulation, LS-DYNA explicit commercial package has been utilized. The generated results show an acceptable agreement between experimental and numerical simulation outcomes.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.