960 resultados para Spine tuberculosis
Spoligotyping of clinical Mycobacterium tuberculosis isolates from the state of Minas Gerais, Brazil
Resumo:
We performed spoligotyping on 114 strains of the Mycobacterium tuberculosis (Mtb) complex that had been isolated from patients in Minas Gerais Health Units during 2004. A total of 82/114 (72%) clinical isolates were clustered and 32/114 (28%) were unique. Seven shared types containing nine strains were newly created. A total of nine patterns corresponded to unreported orphan strains, as evaluated against all of the strains recorded in the SITVIT2 proprietary database in the Institut Pasteur de la Guadeloupe. The major clades were composed of isolates that belong to the following genotypes: Latin-America and Mediterranean (63/114, 55.3%) (the ill-defined T superfamily) (12/114, 10.5%), Haarlem (8/114, 7%), X clade (6/114, 5.3%), S clade (3/114, 2.6%) and the East-African Indian and Manu types, each with 1/114 (0.9%) isolates. A considerable number of strains (n = 20, 17.5%) showed patterns that did not fall within any of the previously described major clades. We conclude the bulk of tuberculosis (TB) (92/114, 80.7%) in our location is recent evolutionary strains that belong to the principal genetic groups 2/3. Further studies on epidemiology of TB are required to understand Mtb biodiversity and TB transmission in this region.
Resumo:
The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test.
Resumo:
We applied MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing) to directly analyze the bacilli present in 61 stain-positive specimens from tuberculosis patients. A complete MIRU type (24 loci) was obtained for all but one (no amplification in one locus) of the specimens (98.4%), and the allelic values fully correlated with those obtained from the corresponding cultures. Our study is the first to demonstrate that real-time genotyping of Mycobacterium tuberculosis can be achieved, fully transforming the way in which molecular epidemiology techniques can be integrated into control programs.
Resumo:
The aim of the present study was to compare polymerase chain reaction (PCR)-based methods - spoligotyping and mycobacterial interspersed repetitive units (MIRU) typing - with the gold-standard IS6110 restriction fragment length polymorphism (RFLP) analysis in 101 isolates of Mycobacterium tuberculosis to determine the genetic diversity of M. tuberculosis clinical isolates from Delhi, North India. Spoligotyping resulted in 49 patterns (14 clusters); the largest cluster was composed of Spoligotype International Types (SITs)26 [Central-Asian (CAS)1-Delhi lineage], followed by SIT11 [East-African-Indian (EAI) 3-Indian lineage]. A large number of isolates (75%) belonged to genotypic lineages, such as CAS, EAI and Manu, with a high specificity for the Indian subcontinent, emphasising the complex diversity of the phylogenetically coherent M. tuberculosis in North India. MIRU typing, using 11 discriminatory loci, was able to distinguish between all but two strains based on individual patterns. IS6110-RFLP analysis (n = 80 strains) resulted in 67 unique isolates and four clusters containing 13 strains. MIRUs discriminated all 13 strains, whereas spoligotyping discriminated 11 strains. Our results validate the use of PCR-based molecular typing of M. tuberculosis using repetitive elements in Indian isolates and demonstrate the usefulness of MIRUs for discriminating low-IS6110-copy isolates, which accounted for more than one-fifth of the strains in the present study.
Resumo:
The objective of the current study was to compare two rapid methods, the BBL Mycobacteria Growth Indicator Tube (MGIT TM) and Biotec FASTPlaque TB TM (FPTB) assays, with the conventional Löwenstein-Jensen (LJ) media assay to diagnose mycobacterial infections from paucibacillary clinical specimens. For evaluation of the clinical utility of the BBL MGIT TM and FPTB assays, respiratory tract specimens (n = 208), with scanty bacilli or clinically evident, smear negative cases and non-respiratory tract specimens (n = 119) were analyzed and the performance of each assay was compared with LJ media. MGIT and FPTB demonstrated a greater sensitivity (95.92% and 87.68%), specificity (94.59% and 98.78%), positive predictive value (94.91% and 99.16%) and negative predictive value (96.56% and 90.92%), respectively, compared to LJ culture for both respiratory tract and non-respiratory tract specimens. However, the FPTB assay was unable to detect nontuberculous mycobacteria and few Mycobacterium tuberculosis complex cases from paucibacillary clinical specimens. It is likely that the analytical sensitivity of FPTB is moderately low and may not be useful for the direct detection of tuberculosis in paucibacillary specimens. The current study concluded that MGIT was a dependable, highly efficient system for recovery of M. tuberculosis complexes and nontuberculous mycobacteria from both respiratory and non-respiratory tract specimens in combination with LJ media.
Resumo:
Drug resistance is one of the major concerns regarding tuberculosis (TB) infection worldwide because it hampers control of the disease. Understanding the underlying mechanisms responsible for drug resistance development is of the highest importance. To investigate clinical data from drug-resistant TB patients at the Tropical Diseases Hospital, Goiás (GO), Brazil and to evaluate the molecular basis of rifampin (R) and isoniazid (H) resistance in Mycobacterium tuberculosis. Drug susceptibility testing was performed on 124 isolates from 100 patients and 24 isolates displayed resistance to R and/or H. Molecular analysis of drug resistance was performed by partial sequencing of the rpoB and katGgenes and analysis of the inhA promoter region. Similarity analysis of isolates was performed by 15 loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. The molecular basis of drug resistance among the 24 isolates from 16 patients was confirmed in 18 isolates. Different susceptibility profiles among the isolates from the same individual were observed in five patients; using MIRU-VNTR, we have shown that those isolates were not genetically identical, with differences in one to three loci within the 15 analysed loci. Drug-resistant TB in GO is caused by M. tuberculosis strains with mutations in previously described sites of known genes and some patients harbour a mixed phenotype infection as a consequence of a single infective event; however, further and broader investigations are needed to support our findings.
Resumo:
The performance of the immunochromatographic assay, SD BIOLINE TB Ag MPT64 RAPID®, was evaluated in Madagascar. Using mouse anti-MPT64 monoclonal antibodies for rapid discrimination between the Mycobacterium tuberculosis complex and nontuberculous mycobacteria, the kit was tested on mycobacteria and other pathogens using conventional methods as the gold standard. The results presented here indicate that this kit has excellent sensitivity (100%) and specificity (100%) compared to standard biochemical detection and can be easily used for the rapid identification of M. tuberculosis complex.
Resumo:
Access to online repositories for genomic and associated "-omics" datasets is now an essential part of everyday research activity. It is important therefore that the Tuberculosis community is aware of the databases and tools available to them online, as well as for the database hosts to know what the needs of the research community are. One of the goals of the Tuberculosis Annotation Jamboree, held in Washington DC on March 7th-8th 2012, was therefore to provide an overview of the current status of three key Tuberculosis resources, TubercuList (tuberculist.epfl.ch), TB Database (www.tbdb.org), and Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org). Here we summarize some key updates and upcoming features in TubercuList, and provide an overview of the PATRIC site and its online tools for pathogen RNA-Seq analysis.
Resumo:
The performance of the nitrate reductase assay (NRA) was compared with the proportion method (PM) on Lowenstein-Jensen medium and the BACTEC MGIT960 assay under routine conditions using 160 clinical isolates of Mycobacterium tuberculosis with a high proportion of resistant strains. The mean time to obtain results was 8.8 days and the overall agreements between NRA and PM and NRA and M960 were 95% and 94%, respectively. NRA was easy to perform and represents a useful tool for the rapid screening of drug-resistant M. tuberculosis strains in low-resource countries.
Resumo:
The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 µg/mL and 2.0-0.03 µg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 µg/mL and the RIF concentration was between 2.0-0.06 µg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries.
Resumo:
Monitoring the extent of and trends in multidrug-resistant tuberculosis (MDR-TB) is a priority of the Brazilian National Tuberculosis Control Programme. The current study aimed to estimate the incidence of MDR-TB, describe the profile of TB drug resistance in risk groups and examine whether screening for MDR-TB adhered to the recommended guidelines. A descriptive study that examined diagnosed cases of pulmonary TB was conducted in the city of Santos, Brazil, between 2000-2004. Of the 2,176 pulmonary TB cases studied, 671 (30.8%) met the criteria for drug sensitivity testing and, of these cases, 31.7% (213/671) were tested. Among the tested cases, 9.4% were resistant to one anti-TB drug and 15% were MDR. MDR was observed in 11.6% of 86 new TB cases and 17.3% of 127 previously treated cases. The average annual incidence of MDR-TB was 1.9 per 100,000 inhabitants-years. The extent of known MDR-TB in the city of Santos is high, though likely to be underestimated. Our study therefore indicates an inadequate adherence to the guidelines for MDR-TB screening and suggests the necessity of alternative strategies of MDR-TB surveillance.
Resumo:
Boletín semanal para profesionales sanitarios de la Secretaría General de Salud Pública y Participación Social de la Consejería de Salud
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.
Resumo:
The occurrence of tuberculosis (TB) in prisons has been described as an alarming public health problem in many countries, especially in developing nations. The objective of this study was to conduct a survey among prisoners with TB respiratory symptoms in order to estimate the incidence of the disease, to analyze the drug susceptibility profile and genotype the isolates of Mycobacterium tuberculosis in the city of Charqueadas, southern of Brazil. The TB incidence was 55/1,900 inhabitants in the prison; this corresponds to an incidence of 3,789/100,000 inhabitants, with a prevalence of 72/1,900 (4,960/100,000 inhabitants). Drug susceptibility test was performed and, among the analyzed isolates, 85% were susceptible to all drugs tested and 15% were resistant to at least one drug, of which 89% were resistant only to isoniazid (INH) or in combination with another drug. The genotype classification of spoligotyping analysis showed that 40% of the isolates belong to LAM family, 22% to T family, 17.5% to Haarlem family, 12.5% to U family and 3% to X family. The shared international spoligotypes most frequently found were 729 (27%), 50 (9.5%), 42 (8%), 53 (8%) and 863 (8%). In conclusion, it was observed that TB in this specific population had been caused, mostly, by strains that have been transmitted in the last few years, as demonstrated by the large level of genotype clustering. In addition, it was found specific large clusters, which were not often found in the general population from the same period and in the same region.
Resumo:
The purpose of this study was to analyse a skeleton (adult female, 25-30 years) that presented evidence of tuberculous spondylitis. The skeleton, dated from the Roman Period (III-VI centuries), was excavated near the town of Győr, in western Hungary. The skeleton was examined by gross observation supplemented with mycolic acid and proteomic analyses using MALDI-TOF/TOF tandem mass spectrometry. The biomolecular analyses supported the morphological diagnosis.