978 resultados para Spectral bands
Resumo:
The specific side-chain orientations of the phenyl group in the polypeptides poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbobenzoxy-L-serine in the beta-structure have been studied by spectral measurements in solutions. All the three polypeptides exhibit aromatic CD bands, indicating the asymmetric placement of the side-chain phenyl rings when the polypeptide backbone takes up the antiparallel beta-structure. Supporting evidence for this is derived from n.m.r. spectra of the polypeptides, which show upfield shift of the phenyl protons due to the stacking of the aromatic rings. Molecular model building studies reveal the stacking of alternate phenyl groups along the polypeptide chain.
Resumo:
Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.
Resumo:
A current error space phasor based simple hysteresis controller is proposed in this paper to control the switching frequency variation in two-level pulsewidth-modulation (PWM) inverter-fed induction motor (IM) drives. A parabolic boundary for the current error space phasor is suggested for the first time to obtain the switching frequency spectrum for output voltage with hysteresis controller similar to the constant switching frequency voltage-controlled space vector PWM-based IM drive. A novel concept of online variation of this parabolic boundary, which depends on the operating speed of motor, is presented. A generalized technique that determines the set of unique parabolic boundaries for a two-level inverter feeding any given induction motor is described. The sector change logic is self-adaptive and is capable of taking the drive up to the six-step mode if needed. Steady-state and transient performance of proposed controller is experimentally verified on a 3.7-kW IM drive in the entire speed range. Close resemblance of the simulation and experimental results is shown.
Resumo:
Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.
Resumo:
In this article, the Eringen's nonlocal elasticity theory has been incorporated into classical/local Bernoulli-Euler rod model to capture unique properties of the nanorods under the umbrella of continuum mechanics theory. The spectral finite element (SFE) formulation of nanorods is performed. SFE formulation is carried out and the exact shape functions (frequency dependent) and dynamic stiffness matrix are obtained as function of nonlocal scale parameter. It has been found that the small scale affects the exact shape functions and the elements of the dynamic stiffness matrix. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave dispersion properties of carbon nanotubes.
Resumo:
In this work, an attempt has been made to evaluate the spatial variation of peak horizontal acceleration (PHA) and spectral acceleration (SA) values at rock level for south India based on the probabilistic seismic hazard analysis (PSHA). These values were estimated by considering the uncertainties involved in magnitude, hypocentral distance and attenuation of seismic waves. Different models were used for the hazard evaluation, and they were combined together using a logic tree approach. For evaluating the seismic hazard, the study area was divided into small grids of size 0.1A degrees A xA 0.1A degrees, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources within a radius of 300 km. Rock level PHA values and SA at 1 s corresponding to 10% probability of exceedance in 50 years were evaluated for all the grid points. Maps showing the spatial variation of rock level PHA values and SA at 1 s for the entire south India are presented in this paper. To compare the seismic hazard for some of the important cities, the seismic hazard curves and the uniform hazard response spectrum (UHRS) at rock level with 10% probability of exceedance in 50 years are also presented in this work.