926 resultados para Spatial data
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
Understanding spatial patterns of land use and land cover is essential for studies addressing biodiversity, climate change and environmental modeling as well as for the design and monitoring of land use policies. The aim of this study was to create a detailed map of land use land cover of the deforested areas of the Brazilian Legal Amazon up to 2008. Deforestation data from and uses were mapped with Landsat-5/TM images analysed with techniques, such as linear spectral mixture model, threshold slicing and visual interpretation, aided by temporal information extracted from NDVI MODIS time series. The result is a high spatial resolution of land use and land cover map of the entire Brazilian Legal Amazon for the year 2008 and corresponding calculation of area occupied by different land use classes. The results showed that the four classes of Pasture covered 62% of the deforested areas of the Brazilian Legal Amazon, followed by Secondary Vegetation with 21%. The area occupied by Annual Agriculture covered less than 5% of deforested areas; the remaining areas were distributed among six other land use classes. The maps generated from this project ? called TerraClass - are available at INPE?s web site (http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php)
Resumo:
This short paper presents a numerical method for spatial and temporal downscaling of solar global radiation and mean air temperature data from global weather forecast models and its validation. The final objective is to develop a prediction algorithm to be integrated in energy management models and forecast of energy harvesting in solar thermal systems of medium/low temperature. Initially, hourly prediction and measurement data of solar global radiation and mean air temperature were obtained, being then numerically downscaled to half-hourly prediction values for the location where measurements were taken. The differences between predictions and measurements were analyzed for more than one year of data of mean air temperature and solar global radiation on clear sky days, resulting in relative daily deviations of around -0.9±3.8% and 0.02±3.92%, respectively.
Resumo:
Estimating with greater precision and accuracy the height of plants has been a challenge for the scientific community. The objective this study is to evaluate the spatial variation of tree heights at different spatial scales in areas of the city of Recife, Brazil, using LiDAR remote sensing data. The LiDAR data were processed in the QT Modeler (Quick Terrain Modeler v. 8.0.2) software from Applied Imagery. The TreeVaW software was utilized to estimate the heights and crown diameters of trees. The results obtained for tree height were consistent with field measurements.
Resumo:
The aim of this study was to analyze the distribution and abundance of the fish fauna of Palmas bay on Anchieta Island in southeastern Brazil. Specimens were caught in the summer and winter of 1992, using an otter trawl at three locations in the bay. The specimens were caught in both the nighttime and daytime. Data on the water temperature and salinity were recorded for the characterization of the predominant water mass in the region, and sediment samples were taken for granulometric analysis. A total of 7 656 specimens (79 species), with a total weight of approximately 300 kg, were recorded. The most abundant species were Eucinostomus argenteus, Ctenosciaena gracilicirrhus, Haemulon steindachneri, Eucinostomus gula and Diapterus rhombeus, which together accounted for more than 73% of the sample. In general, the ecological indices showed no differences in the composition of species for the abiotic variables analyzed. The multivariate analysis showed that the variations in the distribution of the fish fauna were mainly associated with intra-annual differences in temperature and salinity, resulting from the presence of South Atlantic Central Water (SACW) in the area during the summer. The analysis also showed an association with the type of bottom and a lesser association with respect to the night/day periods.
Resumo:
In the southern region of Mato Grosso do Sul state, Brazil, a foot-and-mouth disease (FMD) epidemic started in September 2005. A total of 33 outbreaks were detected and 33,741 FMD-susceptible animals were slaughtered and destroyed. There were no reports of FMD cases in other species than bovines. Based on the data of this epidemic, it was carried out an analysis using the K-function and it was observed spatial clustering of outbreaks within a range of 25km. This observation may be related to the dynamics of foot-and-mouth disease spread and to the measures undertaken to control the disease dissemination. The control measures were effective once the disease did not spread to farms more than 47 km apart from the initial outbreaks.
Resumo:
Background: Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results: E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions: There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.
Resumo:
Nitrogen variations at different spatial scales and integrated across functional groups were addressed for lowland tropical forests in the Brazilian Amazon as follows: (1) how does N availability vary across the region over different spatial scales (regional x landscape scale); ( 2) how are these variations in N availability integrated across plant functional groups ( legume 9 non-legume trees). Leaf N, P, and Ca concentrations as well the leaf N isotope ratios (delta(15)N) from a large set of legume and non-legume tree species were measured. Legumes had higher foliar N/Ca ratios than non-legumes, consistent with the high energetic costs in plant growth associated with higher foliar P/Ca ratios found in legumes than in non-legumes. At the regional level, foliar delta(15)N decreased with increasing rainfall. At the landscape level, N availability was higher in the forests on clayey soils on the plateau than in forests on sandier soils. The isotope as well as the non-isotope data relationships here documented, explain to a large extent the variation in delta(15)N signatures across gradients of rainfall and soil. Although at the regional level, the precipitation regime is a major determinant of differences in N availability, at the landscape level, under the same precipitation regime, soil type seems to be a major factor influencing the availability of N in the Brazilian Amazon forest.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Parana (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited.
Resumo:
Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.
Resumo:
To determine the effect of sensor placement on the performance of a disease-warning system for sooty blotch and flyspeck (SBFS), we measured leaf wetness duration (LWD) at 12 canopy positions in apple trees, then simulated operation of the disease-warning system using LWD measurements from different parts of the canopy. LWD sensors were placed in four trees within one Iowa orchard during two growing seasons, and in one tree in each of four orchards during a single growing season. The LWD measurements revealed substantial heterogeneity among sensor locations. In all data sets, the upper, eastern portion of the canopy had the longest mean daily LWD, and was the first site to form dew and the last to dry. The lower, western portion of the canopy averaged about 3 It less LWD per day than the top of the canopy, and was the last zone where dew formed and the first to dry off. On about 25% of nights when dew occurred in the top of the canopy, no dew formed in the lower, western canopy. Intracanopy variability of LWD was more pronounced when dew was the sole source of wetness than on days when rainfall occurred. Daily LWD in the upper, eastern portion of the canopy was slightly less than reference measurements made at a 0.7-m height over turfgrass located near the orchard. When LWD measurements from several canopy positions were input to the SBFS warning system, timing of occurrence of a fungicide-spray threshold varied by as much as 30 days among canopy positions. Under Iowa conditions, placement of an LWD sensor at an unobstructed site over turfgrass was a fairly accurate surrogate for the wettest part of the canopy. Therefore, such an extra-canopy LWD sensor might be substituted for a within-canopy sensor to enhance operational reliability of the SBFS warning system.