969 resultados para Spatial Science
Resumo:
This article presents a systematic and logical study of the topology optimized design, microfabrication, and static/dynamic performance characterization of an electro-thermo-mechanical microgripper. The microgripper is designed using a topology optimization algorithm based on a spatial filtering technique and considering different penalization coefficients for different material properties during the optimization cycle. The microgripper design has a symmetric monolithic 2D structure which consists of a complex combination of rigid links integrating both the actuating and gripping mechanisms. The numerical simulation is performed by studying the effects of convective heat transfer, thermal boundary conditions at the fixed anchors, and microgripper performance considering temperature-dependent and independent material properties. The microgripper is fabricated from a 25 mm thick nickel foil using laser microfabrication technology and its static/dynamic performance is experimentally evaluated. The static and dynamic electro-mechanical characteristics are analyzed as step response functions with respect to tweezing/actuating displacements, applied current/power, and actual electric resistance. A microgripper prototype having overall dimensions of 1mm (L) X 2.5mm (W) is able to deliver the maximum tweezing and actuating displacements of 25.5 mm and 33.2 mm along X and Y axes, respectively, under an applied power of 2.32 W. Experimental performance is compared with finite element modeling simulation results.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.
Model for facilities or vendors location in a global scale considering several echelons in the Chain
Resumo:
The facilities location problem for companies with global operations is very complex and not well explored in the literature. This work proposes a MILP model that solves the problem through minimization of the total logistic cost. Main contributions of the model are the pioneer carrying cost calculation, the treatment given to the take-or-pay costs and to the international tax benefits such as drawback and added value taxes in Brazil. The model was successfully applied to a real case of a chemical industry with industrial plants and sales all over the world. The model application recommended a totally new sourcing model for the company.
Resumo:
(Spatial-temporal variation in coiled and straight morphotypes of Cylindrospermopsis raciborskii (Wolsz) Seenayya et Subba Raju (Cyanobacteria)). This study reports the spatial and temporal behavior of straight and coiled morphotypes of C. raciborskii in a reservoir in Brazil`s semiarid region as well as the main factors responsible for the variability. Two set of samples were collected from the subsurface and bottom in the central region of a reservoir in two seasonal periods (dry January 2005; rainy June 2005) over 20-hour sampling periods during daylight (8 am, 12 pm and 4 pm) and dark (8 pm, 12 am and 4 am) hours. Measurements of abiotic parameters were determined concurrently to the sampling of biotic variables. Two C. raciborskii morphotypes were found in the reservoir: straight and coiled. There was no difference in density of the straight and coiled C. raciborskii morphotypes between the different sampling times for either season. Vertical differences were found in the distribution of both morphotypes in both seasons, with greater densities recorded at the subsurface. Densities of the two C. raciborskii morphotypes were greater in the dry season, with the density of the coiled morphotype at the surface two-fold greater than that of the straight morphotype and that found in the rainy season. The ecological success of the coiled morphotype was due to thermal stratification, whereas a mixed condition was determinant in the success of the straight morphotype.
Resumo:
The use of chloroplast DNA markers (cpDNA) helps to elucidate questions related to ecology, evolution and genetic structure. The knowledge of inter-and intra-population genetic structure allows to design effective conservation and management strategies for tropical tree species. With the aim to help the conservation of Hymenaea stigonocarpa of the Cerrado (Brazilian savanna) in Sao Paulo State, an analysis of the spatial genetic structure (SGS) was conducted in two populations using five universal chloroplast microsatellite loci (cpSSR). The population of 68 trees of H. stigonocarpa in the Ecological Station of Itirapina (ESI) had a single haplotype, indicating a strong founder effect. In turn, the population of 47 trees of H. stigonocarpa in a contiguous area that includes the Ecological Station of Assis and the Assis State Forest (ESA), showed six haplotypes ((n) over cap (h) = 6) with a moderate haplotype diversity ((h) over cap = 0667 + 0094), revealing that it was founded by a small number of maternal lineages. The SGS analysis for the population ESA/ASF, using Moran`s I index, indicated limited seed dispersal. Considering SGS, for ex situ conservation strategies in the population ESA/ASF, seed harvesting should require a minimum distance of 750 m among seed-trees.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Establishing a few sites in which measurements of soil water storage (SWS) are time stable significantly reduces the efforts involved in determining average values of SWS. This study aimed to apply a new criterion the mean absolute bias error (MABE)-to identify temporally stable sites for mean SWS evaluation. The performance of MABE was compared with that of the commonly used criterion, the standard deviation of relative difference (SDRD). From October 2004 to October 2008, SWS of four soil layers (0-1.0, 1.0-2.0,2.0-3.0, and 3.0-4.0 m) was measured, using a neutron probe, at 28 sites on a hillslope of the Loess Plateau, China. A total of 37 SWS data sets taken over time were divided into two subsets, the first consisting of 22 dates collected during the calibration period from October 2004 to September 2006, and the second with 15 dates collected during the validation period from October 2006 to October 2008. The results showed that if a critical value of 5% for MABE was defined, more than half the sites were temporally stable for both periods, and the number of temporally stable sires generally increased with soil depth. Compared with SDRD, MABE was more suitable for the identification of time-stable sites for mean SS prediction. Since the absolute prediction error of drier sites is more sensitive to changes in relative difference in terms of mean SWS prediction, the sites of wet sectors should be preferable for mean SWS prediction for the same changes in relative difference.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
The representation of sustainability concerns in industrial forests management plans, in relation to environmental, social and economic aspects, involve a great amount of details when analyzing and understanding the interaction among these aspects to reduce possible future impacts. At the tactical and operational planning levels, methods based on generic assumptions usually provide non-realistic solutions, impairing the decision making process. This study is aimed at improving current operational harvesting planning techniques, through the development of a mixed integer goal programming model. This allows the evaluation of different scenarios, subject to environmental and supply constraints, increase of operational capacity, and the spatial consequences of dispatching harvest crews to certain distances over the evaluation period. As a result, a set of performance indicators was selected to evaluate all optimal solutions provided to different possible scenarios and combinations of these scenarios, and to compare these outcomes with the real results observed by the mill in the study case area. Results showed that it is possible to elaborate a linear programming model that adequately represents harvesting limitations, production aspects and environmental and supply constraints. The comparison involving the evaluated scenarios and the real observed results showed the advantage of using more holistic approaches and that it is possible to improve the quality of the planning recommendations using linear programming techniques.
Resumo:
In a previous study, we observed no spatial genetic structure in Mexican populations of the parasitoids Chelonus insularis Cresson (Hymenoptera: Braconidae) and Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) by using microsatellite markers In the current study, we Investigated whether for these important parasitoids of the fall armyworm (Lepidoptera: Noctuidae) there is any genetic structure at a larger scale Insects of both species were collected across the American continent and their phylogeography was Investigated using both nuclear and mitochondria] markers Our results suggest an ancient north-south migration of C insularis, whereas no clear pattern] could be determined for C sonorensis. Nonetheless, the resulting topology indicated the existence of a cryptic taxon within this later species. a few Canadian specimens determined as C. sonorensis branch outside a clack composed of the Argentinean Chelonus grioti Blanchard, the Brazilian Chelonus flavicincta Ashmead, and the rest of the C sonorensis individuals The individuals revealing the cryptic taxon were collected from Thichoplusia in (Hubner) (Lepidoptera. Noctuidae) on tomato (Lycopersicon spp) and may represent a biotype that has adapted to the early season phenology of its host. Overall, the loosely defined spatial genetic structure previously shown at a local fine scale also was found at the larger scale, for both species Dispersal of these insects may be partly driven by wind as suggested by genetic similarities between Individuals coming from very distant locations.
Resumo:
The eriophyid mite Aceria guerreronis occurs in most coconut growing regions of the world and causes enormous damage to coconut fruits. The concealed environment of the fruit perianth under which the mite resides renders its control extremely difficult. Recent studies suggest that biological control could mitigate the problems caused by this pest. Neoseiulus paspalivorus and Proctolaelaps bickleyi are two of the most frequently found predatory mites associated with A. guerreronis on coconut fruits. Regarding biological control, the former has an advantage in invading the tight areas under the coconut fruit perianth while the latter is more voracious on the pest mites and has a higher reproductive capacity. Based on the idea of the combined use/release of both predators on coconut fruits, we studied their compatibility in spatial niche use and intraguild predation (IGP). Spatial niche use on coconut fruits was examined on artificial arenas mimicking the area under the coconut fruit perianth and the open fruit surface. Both N. paspalivorus and P. bickleyi preferentially resided and oviposited inside the tight artificial chamber. Oviposition rate of P. bickleyi and residence time of N. paspalivorus inside the chamber were reduced in the presence of a conspecific female. Residence of N. paspalivorus inside the chamber was also influenced by the presence of P. bickleyi. Both N. paspalivorus and P. bickleyi preyed upon each other with relatively moderate IGP rates of adult females on larvae but neither species yielded nutritional benefits from IGP in terms of adult survival and oviposition. We discuss the relevance of our findings for a hypothetic combined use of both predators in biological control of A. guerreronis.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.