888 resultados para Spatial Data Infrastructure
Resumo:
Hydrogeomorphic processes are a major threat in many parts of the Alps, where they periodically damage infrastructure, disrupt transportation corridors or even cause loss of life. Nonetheless, past torrential activity and the analysis of areas affected during particular events remain often imprecise. It was therefore the purpose of this study to reconstruct spatio-temporal patterns of past debris-flow activity in abandoned channels on the forested cone of the Manival torrent (Massif de la Chartreuse, French Prealps). A Light Detecting and Ranging (LiDAR) generated Digital Elevation Model (DEM) was used to identify five abandoned channels and related depositional forms (lobes, lateral levees) in the proximal alluvial fan of the torrent. A total of 156 Scots pine trees (Pinus sylvestris L.) with clear signs of debris flow events was analyzed and growth disturbances (GD) assessed, such as callus tissue, the onset of compression wood or abrupt growth suppression. In total, 375 GD were identified in the tree-ring samples, pointing to 13 debris-flow events for the period 1931–2008. While debris flows appear to be very common at Manival, they have only rarely propagated outside the main channel over the past 80 years. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of four patterns of debris-flow routing and led to the determination of three preferential breakout locations. Finally, the results of this study demonstrate that the temporal distribution of debris flows did not exhibit significant variations since the beginning of the 20th century.
Resumo:
Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets.
Resumo:
Vietnam has developed rapidly over the past 15 years. However, progress was not uniformly distributed across the country. Availability, adequate visualization and analysis of spatially explicit data on socio-economic and environmental aspects can support both research and policy towards sustainable development. Applying appropriate mapping techniques allows gleaning important information from tabular socio-economic data. Spatial analysis of socio-economic phenomena can yield insights into locally-specifi c patterns and processes that cannot be generated by non-spatial applications. This paper presents techniques and applications that develop and analyze spatially highly disaggregated socioeconomic datasets. A number of examples show how such information can support informed decisionmaking and research in Vietnam.
Resumo:
The objectives of this study were to describe the spatio-temporal pattern of an epidemic of highly pathogenic avian influenza (HPAI) in Vietnam and to identify potential risk factors for the introduction and maintenance of infection within the poultry population. The results indicate that during the time period 2004–early 2006 a sequence of three epidemic waves occurred in Vietnam as distinct spatial and temporal clusters. The risk of outbreak occurrence increased with a greater percentage of rice paddy fields, increasing domestic water bird and chicken density. It increased with reducing distance to higher population density aggregations, and in the third epidemic wave with increasing percentage of aquaculture. The findings indicate that agri-livestock farming systems involving domestic water birds and rice production in river delta areas are important for the maintenance and spread of infection. While the government’s control measures appear to have been effective in the South and Central parts of Vietnam, it is likely that in the North of Vietnam the vaccination campaign led to transmission of infection which was subsequently brought under control.
Impact of Orthorectification and Spatial Sampling on Maximum NDVI Composite Data in Mountain Regions
Resumo:
The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.
Resumo:
This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.
Resumo:
Firm location patterns emerge as a consequence of multiple factors, including firm considerations, labor force availability, market opportunities, and transportation costs. Many of these factors are influenced by changes in accessibility wrought by new transportation infrastructure. In this paper we use spatial statistical techniques and a micro-level data base to evaluate the effects of Madrid?s metro line 12 (known as Metrosur) expansion on business location patterns. The case study is the municipality of Alcorcon, which is served by the new metro line since 2003. Specifically, we explore the location patterns by different industry sectors, to evaluate if the new metro line has encouraged the emergence of a ?Metrosur spatial economy?. Our results indicate that the pattern of economic activity location is related to urban accessibility and that agglomeration, through economies of scale, also plays an important role. The results presented in this paper provide evidence useful to inform efficient transportation, urban, and regional economic planning.
Resumo:
Spatial variability of Vertisol properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns. The objectives of the present work were (i) to quantify the spatial structure of different physical properties collected from a Vertisol, (ii) to search for potential correlations between different spatial patterns and (iii) to identify relevant components through multivariate spatial analysis. The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years. We used six soil properties collected from a squared grid (225 points) (penetrometer resistance (PR), total porosity, fragmentation dimension (Df), vertical electrical conductivity (ECv), horizontal electrical conductivity (ECh) and soil water content (WC)). All the original data sets were z-transformed before geostatistical analysis. Three different types of semivariogram models were necessary for fitting individual experimental semivariograms. This suggests the different natures of spatial variability patterns. Soil water content rendered the largest nugget effect (C0 = 0.933) while soil total porosity showed the largest range of spatial correlation (A = 43.92 m). The bivariate geostatistical analysis also rendered significant cross-semivariance between different paired soil properties. However, four different semivariogram models were required in that case. This indicates an underlying co-regionalization between different soil properties, which is of interest for delineating management zones within sugarcane fields. Cross-semivariograms showed larger correlation ranges than individual, univariate, semivariograms (A ≥ 29 m). All the findings were supported by multivariate spatial analysis, which showed the influence of soil tillage operations, harvesting machinery and irrigation water distribution on the status of the investigated area.
Resumo:
The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.
Resumo:
Commerce in rural territories should not be considered as a needed service, but as a basic infrastructure, that impact not only existent population, but also tourism, and rural industrialization. So, the rural areas need not only agriculture but industry and services, to have a global and balanced development, including for the countryside and the population. In the work presented in this paper, we are considering the formulation of the direct relation between population and the endowment of commerce sites within a geographical territory, the ?area of commercial interactions?. These are the closer set of towns that can gravitate to each other to cover the required needs for the populations within the area. The products retailed, range from basic products for the daily lives, to all other products for industry, agriculture, and services. The econometric spatial model developed to evaluate the interactions and estimate the parameters, is based on the Spatial Error Model, which allows for other spatial hidden effects to be considered without direct interference to the commercial disposition. The data and territory used to test the model correspond to a rural area in the Spanish Palencia territory (NUTS-3 level). The parameters have dependence from population levels, local rent per head, local and regional government budgets, and particular spatial restrictions. Interesting results are emerging form the model. The more significant is that the spatial effects can replace some number of commerce sites in towns, given the right spatial distribution of the sites and the towns. This is equivalent to consider the area of commercial interactions as the unit of measurement for the basic infrastructure and not only the towns.