964 resultados para Sonar de varrimento lateral
Resumo:
This work performs an extensive charterisation of precision targeted throwing in professional and recreational darts. The goal is to identify the contributing factors for lateral drift or throwing inaccuracy in the horizontal plane. A multitechnology approach is adopted whereby a custom built body area network of wireless inertial measurement devices monitor tilt, force and timing, an optical 3D motion capture system provides a complete kinematic model of the subject, electromyography sensors monitor muscle activation patterns and a force plate and pressure mat capture tactile pressure and force measurements. The study introduces the concept of constant throwing rhythm and highlights how landing errors in the horizontal plane can be attributable to a number of variations in arm force and speed, centre of gravity and the movements of some of the bodies non throw related extremities.
Resumo:
The work in this thesis concerns the advanced development of polymeric membranes of two types; pervaporation and lateral-flow. The former produced from a solution casting method and the latter from a phase separation. All membranes were produced from casting lacquers. Early research centred on the development of viable membranes. This led to a supported polymer blend pervaporation membrane. Selective layer: plasticized 4:1 mass ratio sodium-alginate: poly(vinyl-alcohol) polymer blend. Using this membrane, pervaporation separation of ethanol/water mixtures was carefully monitored as a function of film thickness and time. Contrary to literature expectations, these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that morphology and structure of the polymer blend changes with thickness and that these changes define membrane efficiency. Mixed matrix membrane development was done using spherical, discreet, size-monodisperse mesoporous silica particles of 1.8 - 2μm diameter, with pore diameters of ~1.8 nm were incorporated into a poly(vinyl alcohol) [PVA] matrix. Inclusion of silica benefitted pervaporation performance for the dehydration of ethanol, improving flux and selectivity throughout in all but the highest silica content samples. Early lateral-flow membrane research produced a membrane from a basic lacquer composition required for phase inversion; polymer, solvent and non-solvent. Results showed that bringing lacquers to cloud point benefits both the pore structure and skin layers of the membranes. Advancement of this work showed that incorporation of ethanol as a mesosolvent into the lacquer effectively enhances membrane pore structure resulting in an improvement in lateral flow rates of the final membranes. This project details the formation mechanics of pervaporation and lateral-flow membranes and how these can be controlled. The principle methods of control can be applied to the formation of any other flat sheet polymer membranes, opening many avenues of future membrane research and industrial application.
Resumo:
The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.
Resumo:
Concentrations of the coccidiostat nicarbazin as low as 2 mg/kg in feed can result in violative drug residues arising in poultry liver. A lateral flow device (LFD) was developed for the detection of contaminating concentrations of nicarbazin following solvent extraction of poultry feeds. Test results, as determined by both visual and instrumental measurement, are available within minutes. For 22 feed samples, nicarbazin-free and fortified at 2 mg/kg, the % relative inhibition ranged from 0 to 45% and from 53 to 85%, respectively. Nicarbazin contamination at the critical concentration (2 mg/kg) can be determined in all cases providing the sampling is representative. A wide range of feed samples taken at a mill that incorporated nicarbazin into poultry feed were analyzed. Data generated for these samples by both the LFDs and a mass spectrometric method were compared, and a significant correlation was achieved.
Resumo:
Multilayer samples of white architectural paint potentially have very high evidential value in forensic casework, because the probability that two unrelated samples will have the same sequence of layers is extremely low. However, discrimination between the different layers using optical microscopy is often difficult or impossible. Here, lateral scanning Raman spectroscopy has been used to chemically map the cross-sections of multilayer white paint chips. It was found that the spectra did allow the different layers to be delineated on the basis of their spectral features. The boundaries between different layers were not as sharp as expected, with transitions occurring over length scales of > 20 µm, even with laser spot diameters <4 µm. However, the blurring of the boundaries was not so large as to prevent recording and identification of spectra from each of the layers in the samples. This method clearly provides excellent discrimination between different multilayer white paint samples and can readily be incorporated into existing procedures for examination of paint transfer evidence.
Resumo:
We examine lateralization of lateral displays in convict cichlids, Amatitlania nigrofasciata, and show a population level preference for showing the right side. This enables contesting pairs of fish to align in a head-to-tail posture, facilitating other activities. We found individuals spent a shorter mean time in each left compared with each right lateral display. This lateralization could lead to contesting pairs using a convention to align in a predictable head-to-tail arrangement to facilitate the assessment of fighting ability. It has major implications for the common use of mirror images to study fish aggression, because the 'opponent' would never cooperate and would consistently show the incorrect side when the real fish shows the correct side. With the mirror, the 'normal' head-to-tail orientation cannot be achieved.
A preliminary Study of the Effects of medio-Lateral Rotation on Stresses in the Artificial Hip Joint
Visible Illustration of the Direct, Lateral and Remote Photocatalytic Destruction of Soot by Titania
Resumo:
An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>= 10(19) W/cm(2)) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields (similar to 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.
Resumo:
Recent studies suggested that the control of hand movements in catching involves continuous vision-based adjustments. More insight into these adjustments may be gained by examining the effects of occluding different parts of the ball trajectory. Here, we examined the effects of such occlusion on lateral hand movements when catching balls approaching from different directions, with the occlusion conditions presented in blocks or in randomized order. The analyses showed that late occlusion only had an effect during the blocked presentation, and early occlusion only during the randomized presentation. During the randomized presentation movement biases were more leftward if the preceding trial was an early occlusion trial. The effect of early occlusion during the randomized presentation suggests that the observed leftward movement bias relates to the rightward visual acceleration inherent to the ball trajectories used, while its absence during the blocked presentation seems to reflect trial-by-trial adaptations in the visuomotor gain, reminiscent of dynamic gain control in the smooth pursuit system. The movement biases during the late occlusion block were interpreted in terms of an incomplete motion extrapolation--a reduction of the velocity gain--caused by the fact that participants never saw the to-be-extrapolated part of the ball trajectory. These results underscore that continuous movement adjustments for catching do not only depend on visual information, but also on visuomotor adaptations based on non-visual information.